THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Биологическое значение митоза очень высоко. Непосвещенному даже представить трудно, какую роль играет в жизнедеятельности процесс простого деления клеток в организме. Способность клеток делиться – это самая важная их функция, основополагающая. Без этого невозможно продолжение жизни на Земле, увеличение популяций одноклеточных организмов, невозможно развитие и продолжение существования большого многоклеточного организма, невозможно также размножение половым путем и развитие новой жизни из оплодотворенной яйцеклетки.

Биологическое значение митоза было бы намного меньше, если бы деление клеток не было сущностью большинства происходящих на нашей планете биологических процессов. Данный процесс происходит в несколько этапов. Каждый из них включает в себя несколько действий внутри клетки. Итогом этого является обязательное умножение генетического базиса одной клетки надвое путем дублирования ДНК, чтобы впоследствии материнская клетка дала жизнь двум дочерним.

Всю жизнь клетки можно заключить в период от образования дочерней до ее последующего деления надвое. Этот период носит в биологии название «клеточный цикл».

Самая первая фаза митоза – это собственно подготовка к клеточному делению. Период, в котором клетки, наделенные ядрами, выполняют непосредственную подготовку к делению, называется интерфазой. В ней происходит все самое важное, а именно – удвоение цепочки ДНК и прочих структур, а также синтез большого количества белка. Таким образом, хромосомы клетки становятся удвоенными, и каждая половинка такой двойной хромосомы носит название «хроматида».

После интерфазы начинается непосредственно сам процесс деления – митоз. Он тоже проходит в несколько ступеней. В итоге все удвоенные части растягиваются симметрично по клетке, чтобы после образования центральной перегородки в каждой новой клетке осталось одинаковое количество образовавшихся компонентов.

Фазы митоза и мейоза схожи, но в последнем (при делении половых клеток) имеется два деления, и в итоге получается не две, а четыре клетки-«дочери». Также перед вторым делением отсутствует удвоение хромосом, поэтому их набор в дочерних клетках остается половинным.

1. Профаза. В этой фазе центриоли клетки очень хорошо видны. Они присутствуют только в клетке животных и человека. У растений нет центриолей.
2. Прометафаза. В этот момент завершается профаза и начинается метафаза.
3. Метафаза. В этот момент хромосомы лежат на «экваторе» клетки.
4. Анафаза. Хромосомы отходят к разным полюсам.
5. Телофаза. Одна клетка-«мать» делится путем образования центральной перегородки на две клетки-«дочери». Так и завершается деление клетки или митоз.

Самое главное биологическое значение митоза – это абсолютно одинаковое разделение удвоенных хромосом на 2 одинаковые части и помещение их в две клетки-«дочери». Разные виды клеток и клетки разных организмов имеют варьирующееся время продолжительности деления – митоза, но в среднем он протекает примерно около полутора часов. Существует очень много факторов, влияющих на этот весьма хрупкий процесс. Любые изменяющиеся условия внешней среды, например, температура окружающего воздуха, режим световых фаз, давление в окружении и внутри организма и клетки, а также множество других факторов, могут значительно повлиять и на продолжительность, и на качество процесса деления клеток. Также длительность всего митоза и его отдельных ступеней напрямую может быть зависима от типа ткани, в клетках которой он и протекает.

Биологическое значение митоза с каждым новым открытием в области цитологии становится более ценным, потому что без этого процесса невозможна жизнь на планете.

Вопросы самоконтроля. Биологическое значение митоза

Задание № 1

Тема 14. Половое размножение.

Вопросы самоконтроля

Биологическое значение митоза.

ТЕЛОФАЗА

АНАФАЗА

МЕТАФАЗА.

Хромосомы приобретают упорядоченное расположение, передвигаясь к экватору. Достигнув экватора, хромосомы располагаются в одной плоскости, и в этот момент к центромерам каждой хромосомы прикрепляется одна из нитей веретена.

В метафазе отчетливо видно, что хромосомы состоят из двух хроматид, соединенных только в области центромеры.

Хроматиды каждой хромосомы начинают расходиться к полюсам клетки: к одному полюсу отходит одна хроматида, к противоположному другая. Движение хромосом осуществляется за счет нитей веретена, которые сокращаются и растягивают дочерние хромосомы от экватора к противоположным полюсам клетки. При движении используется энергия АТФ.

В этот момент в клетке находится два диплоидных набора хромосом.

Приблизившиеся к полюсам клетки хромосомы начинают раскручиваться и снова приобретают форму длинных нитей, переплетающихся друг с другом, что характерно для неделящегося ядра. В дочерних ядрах вновь образуется ядерная оболочка, формируется ядрышко и полностью восстанавливается характерное для интерфазы строение ядра. На протяжении телофазы происходит и деление цитоплазмы, в результате которого две дочерние клетки отделяются друг от друга. Эти клетки по строению полностью сходны с материнской, но отличаются от нее меньшими размерами.

В результате митоза каждая дочерняя клетка получает точно такие же хромосомы, какие имела материнская клетка. Число хромосом в обоих дочерних клетках равно числу хромосом материнской клетки.

Следовательно, биологическое значение митоза заключается в строго равномерном распределении хромосом между ядрами двух дочерних клеток. Это значит, что митоз обеспечивает тонкую передачу всей наследственной информации каждому из дочерних ядер.

Если произойдет нарушение нормального хода митоза и в дочерней клетке хромосом окажется меньше или больше, чем в материнской, то это приведет либо к гибели, либо к существенным изменениям в жизнедеятельности клетки - к возникновению мутаций.

1.Какие формы размножения характерны для живых организмов?

2.Какое размножение называют бесполым?

4.Какие формы бесполого размножения характерны для организмов?

5.Какая из форм бесполого размножения является наиболее молодой?

6.Что такое митоз?

7.Какие клетки делятся путем митоза?

8.Какой набор хромосом содержат клетки в конце интерфазы?

9.В какую из фаз митоза хромосомы располагаются в плоскости экватора?

10.В какую фазу митоза к полюсам клетки расходятся хроматиды?

11.На каком этапе клетки формируется веретено деления?

12.Каково биологическое значение митоза?

1.Прочитайте ниже изложенный учебный материал.

2.Проанализируйте таблицы из приложения

3.Ответьте на вопросы самоконтроля.

Половое размножение - смена поколений и развитие организмов на основе специализированных половых клеток.

Однако у беспозвоночных животных нередко сперматозоиды и яйцеклетки формируются в теле одного организма. Такое явление – обоеполость – называется гермафродитизмом.

Известны случаи, когда новый организм не обязательно появляется в результате слияния половых клеток. У некоторых видов животных и растений наблюдается развитие из неоплодотворенной яйцеклетки (пчелы, осы, тли, некоторые ракообразные (дафнии)). Такое размножение называется девственным или партеногенетическим .

Половое размножение. Новый организм образуется в результате слияния половых клеток-гамет (n). Образуется зигота (2n) с уникальным набором хромосом. Половое размножение характерно для большинства живых организмов. Преимущества : каждая особь обладает уникальным генотипом, что позволяет в результате естественного отбора приспособиться к различным условиям среды.

Характерны следующие особенности : в размножении обычно принимают участие две особи – мужская и женская; чаще осуществляется с помощью специализированных клеток – гамет; редукция количества хромосом и перекомбинация генетического материала в гаметах происходит в результате мейоза; потомки (за исключением однояйцевых близнецов) генетически отличны друг от друга и от родительских особей.

Сперматогенез, овогенез (оогенез).

Гаметогенез – это процесс развития половых клеток – гамет. Предшественники гамет (гаметоциты) диплоидны. Процесс образования сперматозоидов называется сперматогенезом, а образование яйцеклеток – оогенезом (овогенезом). В половых железах различают три разных участка, или зоны: зона размножения , зона роста , зона созревания . Сперматогенез и оогенез включают три одинаковые фазы: размножения, роста, созревания (деления). В сперматогенезе имеется еще одна фаза – формирования.

Фаза размножения : диплоидные клетки многократно делятся митозом. Количество клеток в гонадах растет, их называют оогонии и сперматогонии. Набор хромосом 2n.

В фазе роста происходит их рост, образовавшиеся клетки называются ооциты 1-го порядка и сперматоциты 1-го порядка.

В фазе созревания происходит мейоз, в результате первого мейотического деления образуются гаметоциты 2-го порядка (набор хромосом n2c), которые вступают во второе мейотическое деление, и образуются клетки с гаплоидным набором хромосом (nс). Оогенез на этом этапе практически заканчивается, а сперматогенез включает еще фазу формирования , во время которой формируются сперматозоиды.

В отличие от образования сперматозоидов, которое происходит только после достижения половой зрелости (в частности, у позвоночных животных), процесс образования яйцеклеток начинается еще у зародыша. Период размножения полностью осуществляется на зародышевой стадии развития и заканчивается к моменту рождения (у млекопитающих и человека). В период роста ооциты увеличиваются в размерах за счет накопления питательных веществ (белков, жиров, углеводов) и пигментов – образуется желток. Затем ооциты 1-го порядка вступают в период созревания. В результате первого мейотического деления возникают две дочерние клетки. Одна из них, относительно мелкая, называемая первым полярным тельцем, не является функциональной, а другая, более крупная (ооцит 2-го порядка), подвергается дальнейшим преобразованиям.

Второе деление мейоза осуществляется до стадии метафазы II и продолжится только после того, как ооцит 2-го порядка вступит во взаимодействие со сперматозоидом и произойдет оплодотворение. Таким образом, из яичника выходит, строго говоря, не яйцеклетка, а ооцит 2-го порядка. После оплодотворения он делится, в результате чего возникают яйцеклетка (или яйцо) и второе полярное тельце. Однако традиционно для удобства яйцеклеткой называют ооцит 2-го порядка, готовый к взаимодействию со сперматозоидом. Таким образом, в результате оогенеза образуется одна нормальная яйцеклетка и три полярных тельца.

Гаметы. Это половые клетки, при слиянии которых образуется зигота, дающая начало новому организму. Они представляют собой высокоспециализированные клетки, участвующие в осуществлении процессов, связанных с половым размножением. Гаметы имеют ряд особенностей, отличающих их от соматических клеток : хромосомный набор соматических клеток – диплоидный (2n2с), а гамет – гаплоидный (nс); гаметы не делятся; гаметы, особенно яйцеклетки, более крупные, чем соматические клетки; яйцеклетка содержит много питательных веществ, сперматозоид – мало (практически отсутствуют); гаметы имеют измененное ядерно-цитоплазматическое соотношение по сравнению с соматическими клетками (в яйцеклетке ядро занимает значительно больший объем, чем цитоплазма, в сперматозоиде – наоборот, причем ядро имеет такие же размеры, что и в яйцеклетке). Активная роль в оплодотворении принадлежит сперматозоиду. Поэтому он имеет малые размеры и подвижен (у животных). Яйцеклетка не только приносит в зиготу свой набор хромосом, но и обеспечивает развитие зародыша на ранних стадиях. Поэтому она имеет крупные размеры и, как правило, содержит большой запас питательных веществ.

Организация яйцеклеток животных. Размер яйцеклеток колеблется в широких пределах – от нескольких десятков микрометров до нескольких сантиметров (яйцеклетка человека – около 100 мкм, яйцо страуса, имеющее длину со скорлупой порядка 155 мм, – тоже яйцеклетка). Яйцеклетка имеет ряд оболочек, располагающихся поверх плазматической мембраны, и запасные питательные вещества. У млекопитающих яйцеклетки имеют блестящую оболочку, поверх которой располагается лучистый венец – слой фолликулярных клеток.

Количество питательных веществ, накапливаемых в яйцеклетке, зависит от условий, в которых происходит развитие зародыша. Так, если развитие яйцеклетки происходит вне организма матери и приводит к формированию крупных животных, то желток может составлять более 95% объема яйцеклетки . Яйцеклетка млекопитающих содержит менее 5% желтка. В связи с накоплением питательных веществ у яйцеклеток появляется полярность. Противоположные полюсы называются вегетативным и анимальным. Поляризация проявляется в том, что происходит изменение местоположения ядра в клетке (оно смещается в сторону анимального полюса), а также в особенностях распределения цитоплазматических включений (во многих яйцах количество желтка возрастает от анимального к вегетативному полюсу).

Организация сперматозоидов. Длина сперматозоида человека – 50–60 мкм. Функции сперматозоида определяют и его строение. Головка – самая крупная часть сперматозоида, образованная ядром, которое окружено тонким слоем цитоплазмы. На переднем конце головки расположена акросома – часть цитоплазмы с видоизмененным аппаратом Гольджи. Она вырабатывает фермент, который способствует растворению оболочек яйцеклетки. В месте перехода головки в среднюю часть образуется перехват – шейка сперматозоида, в которой расположены две центриоли. За шейкой располагается средняя часть сперматозоида, содержащая митохондрии, и хвост, который имеет типичное для всех жгутиков эукариот строение и является органоидом движения сперматозоида. Энергию для движения поставляет гидролиз АТФ, происходящий в митохондриях средней части сперматозоида.

Оплодотворение. Совокупность процессов, приводящих к слиянию мужских и женских гамет, объединению их ядер и образованию зиготы, которая дает начало новому организму, называется оплодотворением.

Различают наружное оплодотворение, при котором встреча сперматозоидов и яйцеклеток происходит во внешней среде, и внутреннее оплодотворение, при котором встреча сперматозоидов и яйцеклеток происходит в половых путях самки.

Чаще всего сперматозоид полностью втягивается в яйцо, иногда жгутик остается снаружи и отбрасывается. С момента проникновения сперматозоида в яйцо гаметы перестают существовать, так как образуют единую клетку – зиготу. В зависимости от количества сперматозоидов, проникающих в яйцеклетку при оплодотворении, различают: моноспермию – оплодотворение, при котором в яйцо проникает только один сперматозоид (наиболее обычное оплодотворение), и полиспермию – оплодотворение, при котором в яйцеклетку проникает несколько сперматозоидов. Но даже в этом случае с ядром яйцеклетки сливается ядро только одного из сперматозоидов, а остальные ядра разрушаются.

Мейоз

Первое мейотическое деление.

1. Профаза I.

Хромосомы спирализуются. Можно различить, что каждая хромосома состоит из двух хроматид, соединенных между собой в области центромеры.

Гомологичные хромосомы тесно сближаются друг с другом, соединяются по всей длине и скручиваются – этот процесс называют – конъюгация. Далее проходит обмен одинаковыми, или гомологичными участками (обмен генами) – кроссинговер.

После конъюгации хромосомы расходятся.

2. Метафаза I.

Хромосомы крепятся к нитям веретена деления своими центромерами и располагаются в экваториальной плоскости.

3. Анафаза I.

К полюсам клетки отходят на половинки каждой хромосомы, включающие каждой хромосомы, включающие одну хроматиду, как при митозе, а целые хромосомы, каждая из которых состоит из 2-х хроматид. Следовательно, в дочернюю клетку попадает из каждой пары гомологичных хромосом только одна.

Число хромосом уменьшается в два раза, хромосомный набор становится гаплоидным.

4. Телофаза I.

На продолжительное время образуется ядерная оболочка. Поскольку отдельные хромосомы гаплоидных дочерних клеток продолжают оставаться удвоенными, во время интерфазы между первым и вторым делением мейоза удвоения ДНК не происходят. Клетки образуются в результате 1-го деления созревания, отличающиеся по составу отцовских и материнских хромосом и, следовательно, по набору генов.

Например, все клетки человека, в том числе первичные половые клетки, содержат 46 хромосом. Из них 23 получены от отца и 23 от матери. После 1-го мейотического деления в сперматоциты и овоциты попадает только по 23 хромосомы – по одной хромосоме из каждой пары гомологичных хромосом. Однако вследствие случайности расхождения отцовских и материнских хромосом в анафазе I – образующиеся клетки получают самые разнообразные комбинации родительских хромосом. Например, в одной из них может оказаться 3 отцовских и 20 материнских хромосом, в другой 10 отцовских и 12 материнских, в третьей 20 отцовских и 3 материнских и т.д. Число возможных комбинаций очень велико.

Следовательно, мейоз основа комбинативной генотипической изменчивости.

Второе мейотическое деление.

Протекает, в общем, так же как обычное митотическое деление, с той лишь разницей, что делящаяся клетка гаплоидна.

Профаза II

Хромосомы спирализуются, образуется веретено деления.

Метафаза II

Хромосомы располагаются в экваториальной плоскости клетки, нити веретена деления прикрепляются к центомерам.

Анафаза II.

Хроматиды расходятся к полюсам клетки.

Теплофаза II.

Т.о. из исходной первичной половой клетки образовались четыре гаплоидные клетки с хромосомным набором.

Сущность периода созревания состоит в том, что в половых клетках количество хромосом уменьшается вдвое.

Биологический смысл 2-го мейотического деления заключается в том, что количество ДНК приводится в соответствие хромосомному набору.

У особей мужского пола все четыре гаплоидные клетки, образуются в результате мейоза, в дальнейшем преобразуются в гаметы – сперматозоиды.

У особей женского пола вследствие неравномерного мейоза лишь из одной клетки получается жизнеспособное яйцо. Три другие клетки гораздо мельче, они превращаются в так называемые направительные или редукционные, тельца, вскоре погибающие. Биологический смысл этого – необходимость сохранения в одной клетке всех запасных питательных веществ, которые понадобятся для развития будущего зародыша.

1.Какое размножения называют половым?

2.В чем преимущества полового размножения перед бесполым?

3.Назвовите основные этапы в образовании яйцеклеток и сперматозоидов?

4.Назовите отличительные особенности мейоза и митоза.

5.Какой процесс называют конъюгацией?

6.Какой процесс носит название кроссинговера?

7.В чем заключается биологический смысл мейоза?

Тема 15. Индивидуальное развитие организмов: эмбриональный период

Каково биологическое значение митоза

Светлана сыщенко

Генетическая стабильность. В результате митоза получаются два ядра, содержащие каждое столько же хромосом, сколько их было в родительском ядре. Эти хромосомы происходят от родительских хромосом путем точной репликации ДНК, поэтому гены их содержат совершенно одинаковую наследственную информацию. Дочерние клетки генетически идентичны родительской клетке, так что никаких изменений в генетическую информцию митоз внести не может. Поэтому клеточные популяции (клоны) , происходящие от родительских клеток, обладают генетической стабильностью.
Рост. В результате митозов число клеток в организме увеличивается (процесс, известный под названием гиперплазии) , что представляет собой один из главных механизмов роста.
Бесполое размножение, регенерация и замещение клеток. Многие виды животных и растений размножаются бесполым путем при помощи одного лишь митотического деления клеток. Кроме того, митоз обеспечивает регенерацию утраченных частей (например, ног у ракообразных) и замещение клеток, происходящее в той или иной степени у всех многоклеточных организмов.

Angelina

МИТОЗ- основная форма клеточного деления, сущность которой заключается в равномерном распределении хромосом между дочерними клетками; деление клетки бесполое (соматические клетки) , образуются две дочерние клетки с набором хромосом 2n

Напишите, в чем заключается сущность митоза. Каково его биологическое значение?

Помогите с домашним заданием! Пожалуйста!

Важнейшим компонентом клеточного цикла является митотический (пролиферативный) цикл. Он представляет собой комплекс взаимосвязанных и согласованных явлений во время деления клетки, а также до и после него. Митотический цикл - это совокупность процессов, происходящих в клетке от одного деления до следующего и заканчивающихся образованием двух клеток следующей генерации. Кроме этого, в понятие жизненного цикла входят также период выполнения клеткой своих функций и периоды покоя. В это время дальнейшая клеточная судьба неопределенна: клетка может начать делиться (вступает в митоз) либо начать готовиться к выполнению специфических функций.
Биологическое знаение митоза состоит в том, что он обеспечивает наследственную передачу признаков и свойств в ряду поколений клеток при развитии многоклеточного организма. Благодаря точному и равномерному распределению хромосом при митозе все клетки единого организма генетически одинаковы.
Митотическое деление клеток лежит в основе всех форм бесполого размножения как у одноклеточных, так и у многоклеточных организмов. Митоз обусловливает важнейшие явления жизнедеятельности: рост, развитие и восстановление тканей и органов и бесполое размножение организмов.
http://xn--90aeobapscbe.xn--p1ai/Учебные-материалы/Деление-клеток/41-Митоз-его-фазы-биологическое-значение

Ирина

в чём заключается сущность митоза? каково его биологическое значение?
Метоз-основная форма клеточного деления, сущность которого заключается в равномерном распределении хромосом между дочерними клетками. Биологическое значение метоза. Метоз лежит в основе роста и вегетативного размножения всех организмов, имеющих ядро-энукриот. Обеспечевает постоянство числа хромосом во всех клетках организма.

Митоз - это наиболее распространенный способ деления эукариотических клеток. При митозе геномы каждой из двух образовавшихся клеток идентичны между собой и совпадают с геномом исходной клетки.

Митоз является последним и обычно самым коротким по времени этапом клеточного цикла. С его окончанием жизненный цикл клетки заканчивается и начинаются циклы двух новообразовавшихся.

Диаграмма иллюстрирует длительность этапов клеточного цикла. Буквой M - обозначен митоз. Наибольшая скорость митоза наблюдается в зародышевых клетках, наименьшая - в тканях с высокой степенью дифференциации, если их клетки вообще делятся.

Хотя митоз рассматривают независимо от интерфазы, состоящей из периодов G 1 , S и G 2 , подготовка к нему происходит именно в ней. Самым важным моментом является репликация ДНК, происходящая в синтетическом (S) периоде. После репликации каждая хромосома состоит уже из двух идентичных хроматид. Они сближены по всей своей длине и соединены в области центромеры хромосомы.

В интерфазе хромосомы находятся в ядре и представляют собой клубок тонких очень длинных хроматиновых нитей, которые видны лишь под электронным микроскопом.

В митозе выделяют ряд последовательных фаз, которые также могут называться стадиями или периодами. При классическом упрощенном варианте рассмотрения выделяют четыре фазы. Это профаза, метафаза, анафаза и телофаза . Часто выделяют больше фаз: прометафазу (между профазой и метафазой), препрофазу (характерна для растительных клеток, предшествует профазе).

С митозом связан другой процесс – цитокинез , который протекает в основном в период телофазы. Можно сказать, что цитокинез является как бы составной частью телофазы, или оба процесса идут параллельно. Под цитокинезом понимают разделение цитоплазмы (но не ядра!) родительской клетки. Деление ядра называют кариокинезом , и оно предшествует цитокинезу. Однако при митозе как такового деления ядра не происходит, т. к. сначала распадается одно – родительское, потом образуются два новых – дочерних.

Бывают случаи, когда кариокинез происходит, а цитокинез - нет. В таких случаях образуются многоядерные клетки.

Длительность самого митоза и его фаз индивидуальна, зависит от типа клеток. Обычно профаза и метафаза является самыми длительными периодами.

Средняя продолжительность митоза около двух часов. Животные клетки обычно делятся быстрее, чем клетки растений.

При делении клеток эукариот обязательно образуется двухполюсное веретено деления, состоящее из микротрубочек и связанных с ними белков. Благодаря ему происходит равное распределение наследственного материала между дочерними клетками.

Ниже будет дано описание процессов, которые происходят в клетке в различные фазы митоза. Переход в каждую следующую фазу контролируется в клетке специальными биохимическими контрольными точками, в которых «проверяется», все ли необходимые процессы были правильно завершены. В случае наличия ошибок деление может остановиться, а может - и нет. В последнем случае возникают аномальные клетки.

Фазы митоза

В профазе происходят следующие процессы (в основном параллельно):

    Хромосомы конденсируются

    Ядрышки исчезают

    Ядерная оболочка распадается

    Формируются два полюса веретена деления

Митоз начинается с укорочения хромосом. Составляющие их пары хроматид спирализуются, в результате чего хромосомы сильно укорачиваются и утолщаются. К концу профазы их можно увидеть в световой микроскоп.

Ядрышки исчезают, т. к. образующие их части хромосом (ядрышковые организаторы) находятся уже в спирализованном виде, следовательно, неактивны и не взаимодействуют между собой. Кроме того распадаются ядрышковые белки.

В клетках животных и низших растений центриоли клеточного центра расходятся по полюсам клетки и выступают центрами организации микротрубочек . Хотя у высших растений центриолей нет, микротрубочки также образуются.

От каждого центра организации начинают расходиться короткие (астральные) микротрубочки. Формируется структура похожая на звезду. У растений она не образуется. Их полюса деления более широкие, микротрубочки выходят не из малой, а из относительно широкой области.

Распад ядерной оболочки на мелкие вакуоли знаменует конец профазы.


Справа на микрофотографии зеленым цветом подсвечены микротрубочки, синим - хромосомы, красным – центромеры хромосом.

Также следует отметить, что в период профазы митоза происходи фрагментация ЭПС, она распадается на мелкие вакуоли; аппарат Гольджи распадается на отдельные диктиосомы.

Ключевые процессы прометафазы идут большей часть последовательно:

    Хаотичное расположение и движение хромосом в цитоплазме.

    Соединение их с микротрубочками.

    Движение хромосом в экваториальную плоскость клетки.

Хромосомы оказываются в цитоплазме, они беспорядочно двигаются. Оказавшись на полюсах, у них больше шансов скрепиться с плюс-концом микротрубочки. В конце концов нить прикрепляется к кинетохоре.


Такая кинетохорная микротрубочка начинает нарастать, чем отдаляют хромосому от полюса. В какой-то момент к кинетохоре сестринской хроматиды крепится другая микротрубочка, нарастающая с другого полюса деления. Она тоже начинает толкать хромосому, но уже в противоположном направлении. В результате хромосома становится на экваторе.

Кинетохоры представляют собой белковые образования на центромерах хромосом. Каждая сестринская хроматида имеет свой кинетохор, который «созревает» в профазе.

Кроме астральных и кинетохорных микротрубочек есть те, которые идут от одного полюса к другому, как бы распирают клетку в перпендикулярном экватору направлении.

Признаком начала метафазы является расположение хромосом по экватору , образуется так называемая метафазная, или экваториальная, пластинка . В метафазу хорошо видны количество хромосом, их отличия и то, что они состоят из двух сестринских хроматид, соединенных в районе центромеры.

Хромосомы удерживаются за счет сбалансированных сил натяжения микротрубочек разных полюсов.


    Сестринские хроматиды разделяются, каждая двигается к своему полюсу.

    Полюса удаляются друг от друга.


Анафаза самая короткая фаза митоза. Она начинается, когда центромеры хромосом разделяются на две части. В результате каждая хроматида становится самостоятельной хромосомой и оказывается прикреплена к микротрубочке одного полюса. Нити «тянут» хроматиды к противоположным полюсам. На самом деле микротрубочки разбираются (деполимеризуются), т. е. укорачиваются.

В анафазе животных клеток двигаются не только дочерние хромосомы, но и сами полюса. За счет других микротрубочек они расталкиваются, астральные микротрубочки прикрепляются к мембранам и тоже «тянут».

    Движение хромосом останавливается

    Хромосомы деконденсируются

    Появляются ядрышки

    Восстанавливается ядерная оболочка

    Большая часть микротрубочек исчезает


Телофаза начинается, когда хромосомы перестают двигаться, остановившись у полюсов. Они деспирализуются, становятся длинными и нитевидными.

Микротрубочки веретена деления разрушаются от полюсов к экватору, т. е. со стороны своих минус-концов.

Вокруг хромосом образуется ядерная оболочка путем слияния мембранных пузырьков, на которые в профазе распалось материнское ядро и ЭПС. На каждом полюсе формируется свое дочернее ядро.

Поскольку хромосомы деспирализуются, ядрышковые организаторы становятся активными и появляются ядрышки.

Возобновляется синтез РНК.

Если на полюсах центриоли еще не парные, то около каждой достраивается парная ей. Таким образом на каждом полюсе воссоздается свой клеточный центр, который отойдет в дочернюю клетку.

Обычно телофаза заканчивается разделением цитоплазмы, т. е. цитокинезом.

Цитокинез может начаться еще в анафазе. К началу цитокинеза клеточные органеллы распределяются относительно равномерно по полюсам.

Разделение цитоплазмы растительных и животных клеток происходит по-разному.

У животных клеток благодаря эластичности цитоплазматическая мембрана в экваториальной части клетки начинает впячиваться во внутрь. Образуется борозда, которая в конце концов смыкается. Другими словами, материнская клетка делится перешнуровкой.


В растительных клетках в телофазе нити веретена не исчезают в области экватора. Они сдвигаются ближе к цитоплазматической мембране, их количество увеличивается, и они образуют фрагмопласт . Он состоит из коротких микротрубочек, микрофиламентов, частей ЭПС. Сюда перемещаются рибосомы, митохондрии, комплекс Гольджи. Пузырьки Гольджи и их содержимое на экваторе образуют срединную клеточную пластинку, клеточные стенки и мембрану дочерних клеток.

Значение и функции митоза

Благодаря митозу обеспечивается генетическая стабильность: точное воспроизводство генетического материала в ряду поколений. Ядра новых клеток содержат столько же хромосом, сколько их содержала родительская клетка, и эти хромосомы являются точными копиями родительских (если, конечно, не возникли мутации). Другими словами, дочерние клетки генетически идентичны материнской.

Однако митоз выполняет и ряд других немаловажных функций:

    рост многоклеточного организма,

    бесполое размножение,

    замещение клеток различных тканей у многоклеточных организмов,

    у некоторых видов может происходить регенерация частей тела.

Важнейшим компонентом клеточного цикла является митотический (пролиферативный) цикл. Он представляет собой комплекс взаимосвязанных и согласованных явлений во время деления клетки, а также до и после него. Митотический цикл - это совокупность процессов, происходящих в клетке от одного деления до следующего и заканчивающихся образованием двух клеток следующей генерации. Кроме этого, в понятие жизненного цикла входят также период выполнения клеткой своих функций и периоды покоя. В это время дальнейшая клеточная судьба неопределенна: клетка может начать делиться (вступает в митоз) либо начать готовиться к выполнению специфических функций.

Основные стадии митоза.

1.Редупликация (самоудвоение) генетической информации материнской клетки и равномерное распределение ее между дочерними клетками. Это сопровождается изменениями структуры и морфологии хромосом, в которых сосредоточено более 90% информации эукариотической клетки.

2.Митотический цикл состоит из четырех последовательных периодов: пресинтетического (или постмитотического) G1, синтетического S, постсинтетического (или премитотического) G2 и собственно митоза. Они составляют автокаталитическую интерфазу (подготовительный период).

Фазы клеточного цикла:

1) пресинтетическая (G1) (2n2c, где n-число хромосом, c- число молекул). Идет сразу после деления клетки. Синтеза ДНК еще не происходит. Клетка активно растет в размерах, запасает вещества, необходимые для деления: белки (гистоны, структурные белки, ферменты), РНК, молекулы АТФ. Происходит деление митохондрий и хлоропластов (т. е. структур, способных к ауторепродукции). Восстанавливаются черты организации интерфазной клетки после предшествующего деления;

2) синтетическая (S) (2n4c). Происходит удвоение генетического материала путем репликации ДНК. Она происходит полуконсервативным способом, когда двойная спираль молекулы ДНК расходится на две цепи и на каждой из них синтезируется комплементарная цепочка.

В итоге образуются две идентичные двойные спирали ДНК, каждая из которых состоит из одной новой и старой цепи ДНК. Количество наследственного материала удваивается. Кроме этого, продолжается синтез РНК и белков. Также репликации подвергается небольшая часть митохонд-риальной ДНК (основная же ее часть реплицируется в G2 период);

3) постсинтетическая (G2) (2n4c). ДНК уже не синтезируется, но происходит исправление недочетов, допущенных при синтезе ее в S период (репарация). Также накапливаются энергия и питательные вещества, продолжается синтез РНК и белков (преимущественно ядерных).

S и G2 непосредственно связаны с митозом, поэтому их иногда выделяют в отдельный период - препрофазу.

После этого наступает собственно митоз, который состоит из четырех фаз. Процесс деления включает в себя несколько последовательных фаз и представляет собой цикл. Его продолжительность различна и составляет у большинства клеток от 10 до 50 ч. При этом у клеток тела человека продолжительность самого митоза составляет 1-1,5 ч, G2-периода интерфазы - 2-3 ч, S-периода интерфазы - 6-10 ч.

Стадии митоза.

Процесс митоза принято подразделять на четыре основные фазы: профазу, метафазу, анафазу и телофазу (рис. 1–3). Так как он непрерывен, смена фаз осуществляется плавно - одна незаметно переходит в другую.

В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть - прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n4c).

Рис. 1. Схема митоза в клетках корешка лука


Рис. 2. Схема митоза в клетках корешка лука: 1- интерфаза; 2,3 - профаза; 4 - метафаза; 5,6 - анафаза; 7,8 - телофаза; 9 - образование двух клеток


Рис. 3. Митоз в клетках кончика корешка лука: а - интерфаза; б - профаза; в - метафаза; г - анафаза; л , е - ранняя и поздняя телофазы

В метафазе хромосомы достигают максимальной спирализации и располагаются упорядоченно на экваторе клетки, поэтому их подсчет и изучение проводят в этот период. Содержание генетического материала не изменяется (2n4c).

В анафазе каждая хромосома «расщепляется» на две хроматиды, которые с этого момента называются дочерними хромосомами. Нити веретена, прикрепленные к центромерам, сокращаются и тянут хроматиды (дочерние хромосомы) к противоположным полюсам клетки. Содержание генетического материала в клетке у каждого полюса представлено диплоидным набором хромосом, но каждая хромосома содержит одну хроматиду (4n4c).

В телофазе расположившиеся у полюсов хромосомы деспирализуются и становятся плохо видимыми. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах образуются ядрышки. Разрушается веретено деления. Одновременно идет деление цитоплазмы. Дочерние клетки имеют диплоидный набор хромосом, каждая из которых состоит из одной хроматиды (2n2c).

Нетипичные формы митоза

К нетипичным формам митоза относятся амитоз, эндомитоз, политения.

1. Амитоз - это прямое деление ядра. При этом сохраняется морфология ядра, видны ядрышко и ядерная мембрана. Хромосомы не видны, и их равномерного распределения не происходит. Ядро делится на две относительно равные части без образования митотического аппарата (системы микротрубочек, центриолей, структурированных хромосом). Если при этом деление заканчивается, возникает двухъядерная клетка. Но иногда перешнуровывается и цитоплазма.

Такой вид деления существует в некоторых дифференцированных тканях (в клетках скелетной мускулатуры, кожи, соединительной ткани), а также в патологически измененных тканях. Амитоз никогда не встречается в клетках, которые нуждаются в сохранении полноценной генетической информации, - оплодотворенных яйцеклетках, клетках нормально развивающегося эмбриона. Этот способ деления не может считаться полноценным способом размножения эукариотических клеток.

2. Эндомитоз. При этом типе деления после репликации ДНК не происходит разделения хромосом на две дочерние хроматиды. Это приводит к увеличению числа хромосом в клетке иногда в десятки раз по сравнению с диплоидным набором. Так возникают полиплоидные клетки. В норме этот процесс имеет место в интенсивно функционирующих тканях, например, в печени, где полиплоидные клетки встречаются очень часто. Однако с генетической точки зрения эндомитоз представляет собой геномную соматическую мутацию.

3. Политения. Происходит кратное увеличение содержания ДНК (хромонем) в хромосомах без увеличения содержания самих хромосом. При этом количество хромонем может достигать 1000 и более, хромосомы при этом приобретают гигантские размеры. При политении выпадают все фазы митотического цикла, кроме репродукции первичных нитей ДНК. Такой тип деления наблюдается в некоторых высокоспециализированных тканях (печеночных клетках, клетках слюнных желез двукрылых насекомых). По-литенные хромосомы дрозофил используются для построения цитологических карт генов в хромосомах.

Биологическое значение митоза.

Оно состоит в том, что митоз обеспечивает наследственную передачу признаков и свойств в ряду поколений клеток при развитии многоклеточного организма. Благодаря точному и равномерному распределению хромосом при митозе все клетки единого организма генетически одинаковы.

Митотическое деление клеток лежит в основе всех форм бесполого размножения как у одноклеточных, так и у многоклеточных организмов. Митоз обусловливает важнейшие явления жизнедеятельности: рост, развитие и восстановление тканей и органов и бесполое размножение организмов.

Оно состоит в том, что митоз обеспечивает наследственную передачу признаков и свойств в ряду поколений клеток при развитии многоклеточного организма. Благодаря точному и равномерному распределению хромосом при митозе все клетки единого организма генетически одинаковы.

Митотическое деление клеток лежит в основе всех форм бесполого размножения как у одноклеточных, так и у многоклеточных организмов. Митоз обусловливает важнейшие явления жизнедеятельности: рост, развитие и восстановление тканей и органов и бесполое размножение организмов.

Мейоз - разновидность митоза, в результате которого из диплоидных (2п) соматических клеток половых желез образуются гаплоидные гаметы (1n). При оплодотворении ядра гаметы сливаются, и восстанавливается диплоидный набор хромосом. Таким образом, мейоз обеспечивает сохранение постоянного для каждого вида набора хромосом и количества ДНК.

Мейоз представляет собой непрерывный процесс, состоящий из двух последовательных делений, называемых мейозом I и мейозом II. В каждом делении различают профазу, метафазу, анафазу и телофазу. В результате мейоза I число хромосом уменьшается вдвое (редукционное деление): при мейозе II гаплоидность клеток сохраняется (эквационное деление). Клетки, вступающие в мейоз, содержат генетическую информацию 2n2хр (рис. 1).

В профазе мейоза I происходит постепенная спирализация хроматина с образованием хромосом. Гомологичные хромосомы сближаются, образуя общую структуру, состоящую из двух хромосом (бивалент) и четырех хроматид (тетрада). Соприкосновение двух гомологичных хромосом по всей длине называется конъюгацией. Затем между гомологичными хромосомами появляются силы отталкивания, и хромосомы сначала разделяются в области центромер, оставаясь соединенными в области плеч, и образуют перекресты (хиазмы). Расхождение хроматид постепенно увеличивается, и перекресты смещаются к их концам. В процессе конъюгации между некоторыми хроматидами гомологичных хромосом может происходить обмен участками - кроссинговер, приводящий к перекомбинации генетического материала. К концу профазы растворяются ядерная оболочка и ядрышки, формируется ахроматиновое веретено деления. Содержание генетического материала остается прежним (2n2хр).

В метафазе мейоза I биваленты хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация их достигает максимума. Содержание генетического материала не изменяется (2п2хр).

В анафазе мейоза I гомологичные хромосомы, состоящие из двух хроматид, окончательно отходят друг от друга и расходятся к полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна - число хромосом уменьшается вдвое (происходит редукция). Содержание генетического материала становится 1n2хр у каждого полюса.

В телофазе происходит формирование ядер и разделение цитоплазмы - образуются две дочерние клетки. Дочерние клетки содержат гаплоидный набор хромосом, каждая хромосома - две хроматиды (1n2хр).

Интеркинез - короткий промежуток между первым и вторым мейотическими делениями. В это время не происходит репликации ДНК, и две дочерние клетки быстро вступают в мейоз II, протекающий по типу митоза.

Рис. 1. Схема мейоза (показана одна пара гомологичных хромосом). Мейоз I: 1, 2, 3. 4. 5 - профаза; 6 -метафаза; 7 - анафаза; 8 - телофаза; 9 - интеркинез. Мейоз II; 10 -метафаза; II -анафаза; 12 - дочерние клетки.

В профазе мейоза II происходят тс же процессы, что и в профазе митоза. В метафазе хромосомы располагаются в экваториальной плоскости. Изменений содержания генетического материала не происходит (1n2хр). В анафазе мейоза II хроматиды каждой хромосомы отходят к противоположным полюсам клетки, и содержание генетического метериала у каждого полюса становится lnlxp. В телофазе образуются 4 гаплоидные клетки (lnlxp).

Таким образом, в результате мейоза из одной диплоидной материнской клетки образуются 4 клетки с гаплоидным набором хромосом. Кроме того, в профазе мейоза I происходит перекомбинация генетического материала (кроссинговер), а в анафазе I и II - случайное отхождение хромосом и хроматид к одному или другому полюсу. Эти процессы являются причиной комбинативной изменчивости.

Биологическое значение мейоза :

1) является основным этапом гаметогенеза;

2) обеспечивает передачу генетической информации от организма к организму при половом размножении;

3) дочерние клетки генетически не идентичны материнской и между собой.

Атак же, биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются. Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше. Однако это противоречит правилу постоянства числа хромосом. Благодаря мейозу половые клетки гаплоидны, а при оплодотворении в зиготе восстанавливается диплоидный набор хромосом (рис. 2 и 3).

Рис. 2. Схема гаметогенеза: à - сперматогенез; á - овогенез


Рис. 3. Схема, иллюстрирующая механизм сохранения диплоидного набора хромосом при пол

Амитоз

Амитоз (от греческого a-отрицательная частица и митоз). Прямое деление интерфазного ядра путем перетяжки без образования хромосом, вне митотичного цикла Амитоз может сопровождаться делением клетки, а также ограничиваться делением ядра без разделения цитоплазмы, что ведет к образованию дву- и многоядерных клеток. Амитоз встречается в различных тканях в специализированных, обреченных на гибель клетках, особенно в клетках зародышевых оболочек млекопитающих. Клетка, претерпевающая амитоз, в дальнейшем не способна вступить в нормальный митотический цикл. Прежний взгляд на амитоз как примитивную форму деления ядра, на основе которой развился митоз, не подтвердился. Прямое деление вегетативного ядра (макронуклеуса) инфузорий, внешне напоминающее амитоз, представляет собой качественно своеобразную форму деления ядра, возникшую на основе преобразования митоза.

Каждая соматическая клетка проходит определённый жизненный цикл, включая деление на две соматические клетки. Это деление – митоз –происходит согласно определённому порядку, биологический смысл которого заключается в том, что каждая из дочерних клеток получает точно такой же двойной набор хромосом, что и клетка-родитель. Митоз не вносит никаких изменений в наследственную информацию, и обе дочерние клетки идентичны клетке-родителю. Перед началом митоза ДНК клетки удваивается. Каждая хромосома теперь состоит из двух одинаковых хроматид, которые станут хромосомами дочерних клеток. Митоз состоит из четырёх последовательных фаз — профазы, метафазы, телофазы. В профазе хромосомы становятся хорошо видимыми (при окрашивании). Ядерная оболочка распадается, хромосомы свободно располагаются в цитоплазме клетки. В клетках животных и низших растений центриоли клетки. В клетках животных и низших растений центриоли (органоиды, управляющие клеточным делением) расходятся к полюсам клетки. От центриолей между полюсами протягиваются нити веретена деления, обеспечат расхождение хромосом к полюсам. В метафазе хромосомы располагаются вдоль экватора клетки. В анафазе нити вретина начинают тянуть хроматиды каждой хромосомы к противоположным полюсам клетки. Разделившиеся хроматиды (теперь они уже именуются хромосомами) собираются у полюсов. В телофазе, завершающей митоз, хромосомы, разошедшиеся к полюсам, вновь становятся плохо видны. Нити веретена разрушаются. Вокруг хромосом образуются два новых ядра. Посредине клетки возникает перетяжка, которая делит клетку пополам, на две новые клетки. Продолжается митоз сравнительно недолго — как правило от получаса до трёх часов.

2. Благодаря чему в поколениях при бесполом размножении сохраняется диплоидный набор хромосом?

При бесполом размножении сохраняется диплоидный набор хромосом, бесполое размножение происходит без образования гамет (половых клеток), и в нем участвует лишь одна особь, которая делится, почкуется или формирует споры.

3. Гисто- и ортагонез

Органогенез (от орган и …генез) у животных - образование и развитие органов. Различают онтогенетический органогенез, изучаемый эмбриологией и биологией развития, и филогенетический органогенез, исследуемый сравнительной анатомией. Кроме описания и анализа течения процессов органогенеза, в задачу указанных дисциплин входят раскрытие и причинное объяснение этих процессов в филогенезе и онтогенезе . Сравнительная анатомия рассматривает возникновение новых органов, их преобразование, разделение, прогрессивное развитие и редукцию, процессы рудиментации и т.п. Изучение развития формы органов в связи с их функцией привело к открытию основных закономерностей филогенетического органогенеза. Таковы принципы дифференциации и интеграции , а также смены функций как руководящего начала в филогенетическом преобразовании органов. Онтогенетический органогенез до известной степени повторяет филогенетический органогенез. В ходе первого осуществляется последовательная дифференцировка и интеграция органов, а также неравномерный рост и активное перемещение клеточного материала. Причинное исследование онтогенетического органогенеза доступно точному изучению, особенно благодаря возможности применения экспериментального метода.

У растений термином «органогенез» обычно обозначают формирование и развитие основных органов (корня, стебля, листьев, цветков) в процессе онтогенеза из участка недифференцированной ткани - меристемы .

Гистогенез – совокупность закономерно протекающих в животных организмах процессов, обеспечивающих возникновение, существование и восстановление тканей с их специфическими в разных органах свойствами.

Гистогенез (от греч. histos — ткань и …генез), развитие тканей, совокупность закономерно протекающих процессов, обеспечивающих возникновение, существование и восстановление тканей животных организмов с их специфическими в разных органах свойствами. Изучение Г. разных тканей и его закономерностей — одна из важнейших задач гистологии. Термином «гистогенез» принято обозначать развитие тканей в онтогенезе. Однако закономерности гистогенез не могут рассматриваться в отрыве от эволюционного развития тканей (филогистогенеза). В основе гистогенез лежит начинающаяся с самых ранних стадий эмбриогенеза клеточная дифференцировка — развитие нарастающих морфо-функциональных различий между специализирующимися клетками. Это сложный молекулярно-генетический процесс закономерного включения активности генов, определяющих специфику белковых синтезов в клетке. Размножение клеток, их взаимоперемещения и др. процессы приводят к формированию эмбриональных зачатков, представляющих собой группы клеток, закономерно расположенные в теле зародыша. В результате тканевой дифференцировки эмбриональных зачатков возникает всё многообразие тканей разных органов тела. В послезародышевом периоде процессы Г. подразделяют на 3 основных типа: в тканях, клетки которых не размножаются (например, нервная ткань); в тканях, размножение клеток которых связано главным образом с ростом органа (например, паренхима пищеварительных. желёз, почек); в тканях, характеризующихся постоянным обновлением клеток (например, кроветворная ткань, многие покровные эпителии). Совокупность клеток, совершающих определенный гистогенез, подразделяют на ряд последовательных групп (фондов): фонд родоначальных клеток, способных как к дифференцировке, так и к восполнению убыли себе подобных; фонд клеток-предшественников, дифференцирующихся и способных к размножению; фонд зрелых, закончивших дифференцировку клеток. Восстановление поврежденных или частично утраченных тканей после травм осуществляется благодаря так называемому репаративному гистогенезу. При патологических условиях процессы гистогенеза могут подвергнуться глубоким качественным изменениям и привести к развитию опухолевых тканей

Эмбриональный гистогенез - процесс возникновения специализированных тканей из малодифференцированного клеточного материала эмбриональных зачатков, происходящий в течение эмбрионального развития организма. Эмбриональные зачатки - источники развития тканей и органов в онтогенезе, представленные группами более или менее многочисленных малодифференцированных (неспециализированных) клеток; межклеточного вещества зачатки не имеют.

Гистогенез сопровождается размножением и ростом клеток, их перемещением - миграцией, дифференцировкой клеток и их производных, межклеточными и межтканевыми взаимодействиями - корреляциями, отмиранием клеток. На разных этапах индивидуального развития могут иметь преимущественное значение те или иные из перечисленных компонентов.

В процессе гистогенетической дифференцировки происходят специализация тканевых зачатков и формирование различных видов тканей. При дифференцировке клеток из исходной стволовой клетки образуются диффероны - последовательные ряды клеток (стволовые диффероны). Количество дифферонов в каждом виде тканей может быть различным.

Результатом гистогенетических процессов является формирование основных групп тканей - эпителиальных, крови и лимфы, соединительных, мышечных и нервных. Их формирование начинается в эмбриональном периоде и заканчивается после рождения. Источниками постэмбрионального развития тканей служат стволовые и полустволовые клетки, обладающие высокими потенциями развития. Процесс дифференцировки из стволовых клеток подробно изучен на примере клеток крови.

4. На каком этапе сперматогенеза и оогенеза происходит уменьшение числа хромосом и формирование гаплоидных клеток?

Значительный рост клеток ярко выражен в оогенезе. Основным содержанием периода созревания является мейоз, в результате которого из каждой диплоидной клетки-предшественницы образуется 4 клетки с гаплоидным набором хромосом. При сперматогенезе эти клетки одинаковы по размеру и позже становятся сперматозоидами, а при оогенезе мейоз обеспечивает неравномерное деление цитоплазмы. В результате лишь одна гаплоидная клетка из четырех становится яйцеклеткой, способной к оплодотворению, а три другие представляют собой редукционные тельца, содержащие избыток хроматина и в конечном счете погибающие. Кроме обеспечения гаплоидности мейоз приводит также к возникновению качественного многообразия половых клеток. В профазе первого мейотического деления гомологичные хромосомы отцовского и материнского происхождения, спирализуясь, сближаются попарно соответствующими друг другу участками (так называемая конъюгация), образуя биваленты. При этом отдельные хроматиды переплетаются между собой и могут разрываться в аналогичных участках.

Фаза размножения: диплоидные клетки многократно делятся митозом. Количество клеток в гонадах рас-тет, их называют оогонии и сперматогонии. Набор хромосом 2n. В фазе роста происходит их рост, образовав-шиеся клетки называются ооциты 1-го порядка и сперматоциты 1-го порядка. В фазе созревания происходит мейоз, в результате первого мейотического деления образуются гаметоциты 2-го порядка (набор хромосом n2с), которые вступают во второе мейотическое деление, и образуются клетки с гаплоидным набором хромосом (nc). Овогенез на этом этапе практически заканчивается, а сперматогенез включает еще фазу формирования, во время которой формируются сперматозоиды.

В процессе восстановления целости хроматид гомологичные хромосомы способны обмениваться соответствующими участками. Этот процесс называется кроссинговером. В анафазе первого мейотического деления происходит независимое расхождение материнских и отцовских хромосом к полюсам клетки ,
вследствие чего в гаплоидном наборе будущих гамет возникают разные сочетания материнских и отцовских хромосом. Последний период гаметогенеза (период формирования) наблюдается только при сперматогенезе, во время которого гаплоидные клетки - сперматиды - приобретают особенности строения, характерные для зрелых сперматозоидов.

5. Каких размеров могут быть яйцеклетки?

Размер яйцеклеток колеблется в широких пределах — от нескольких десятков микрометров до нескольких сантиметров (яйцеклетка человека — около 100 мкм, яйцо страуса, имеющее длину со скорлупой порядка 155 мм — тоже яйцеклетка). Яйцеклетка имеет ряд оболочек, располагающихся поверх плазматической мембраны и запасные питательные вещества. У млекопитающих яйцеклетки имеют блестящую оболочку, поверх которой располагается лучистый венец — слой фолликулярных клеток.

6. Самооплодотворение и партеногенез

Самооплодотворение — слияние разнополых или сестринских ядер, образовавшихся в одном индивиде.

Автогамия, самооплодотворение – autogamy or self-fertilization — – тип размножения, при котором зигота образуется вследствие слияния двух гаплоидных ядер внутри клетки этого же организма (инфузория) или же при слиянии гамет, образованных в одном и том же цветке

Самооплодотворение, слияние мужской и женской половых клеток, принадлежащих одной обоеполой особи. В природе самооплодотворение встречается редко: в процессе эволюции у организмов обычно вырабатывались приспособления, устраняющие возможность самооплодотворение и обеспечивающие перекрёстное оплодотворение, в результате которого увеличивается генетическое разнообразие потомства, что способствует как выработке новых приспособлений, так и развитию более жизнеспособного потомства. Среди животных самооплодотворение иногда наблюдается у гидр, плоских червей, некоторых кольчатых червей, моллюсков, рыб; среди растений — у многих водорослей, грибов, цветковых растений (у последних в результате самоопыления)

Самооплодотворение — наиболее тесная форма инбридинга.

Партеногенез – Вид полового размножения, при котором животное развивается из неоплодотворенного яйца; характерно для ос, пчел и некоторых других членистоногих.

Партеногенез (от греч. parthénos — девственница и …генез), девственное размножение, одна из форм полового размножения организмов, при которой женские половые клетки (яйцеклетки) развиваются без оплодотворения. Партеногенез — половое, но однополое размножение — возник в процессе эволюции организмов у раздельнополых форм. В тех случаях, когда партеногенетические виды представлены (всегда или периодически) только самками, одно из главных биологических преимуществ партеногенеза заключается в ускорении темпа размножения вида, так как все особи подобных видов способны оставить потомство. В тех случаях, когда из оплодотворённых яйцеклеток развиваются самки, а из неоплодотворённых — самцы, партеногенез способствует регулированию численных соотношений полов (например, у пчёл). Часто партеногенетические виды и расы являются полиплоидными и возникают в результате отдалённой гибридизации, обнаруживая в связи с этим гетерозис и высокую жизнеспособность. Партеногенез следует отличать от бесполого размножения, которое осуществляется всегда при помощи соматических органов и клеток (размножение делением, почкованием и т.п.). Различают партеногенез. естественный — нормальный способ размножения некоторых организмов в природе и искусственный, вызываемый экспериментально действием разных раздражителей на неоплодотворённую яйцеклетку, в норме нуждающуюся в оплодотворении.

Партеногенез у животных. Исходная форма партеногенеза — зачаточный, или рудиментарный, партеногенез, свойственный многим видам животных в тех случаях, когда их яйца остаются неоплодотворёнными. Как правило, зачаточный партеногенез ограничивается начальными стадиями зародышевого развития; однако иногда развитие достигает конечных стадий (случайный, или акцидентальный, партеногенез). Полный естественный партеногенез — возникновение вполне развитого организма из неоплодотворённой яйцеклетки — встречается во всех типах беспозвоночных. Обычен он у членистоногих (особенно у насекомых). Партеногенез открыт и у позвоночных — рыб, земноводных, особенно часто встречается у пресмыкающихся (этим способом размножаются не менее 20 рас и видов ящериц, гекконов и др.). У птиц большая склонность к партеногенезу, усиленная искусственным отбором до способности давать половозрелых особей (всегда самцов), обнаружена у некоторых пород индеек. У млекопитающих известны только случаи зачаточного партеногенеза; единичные случаи полного развития наблюдались у кролика при искусственном партеногенеза.

Различают облигатный партеногенез, при котором яйца способны только к партеногенетическому развитию, и факультативный партеногенез, при котором яйца могут развиваться и посредством партеногенезом, и в результате оплодотворения [у многих перепончатокрылых насекомых, например у пчёл, из неоплодотворённых яиц развиваются самцы (трутни), из оплодотворённых — женские особи (матки и рабочие пчёлы)]. Часто размножение посредством партеногенез чередуется с обоеполым — так называемый циклический партеногенез. Партеногенетические и половые поколения при циклическом партеногенезе. внешне различны. Так, последовательные генерации у тлей рода Chermes резко различаются по морфологии (крылатые и бескрылые формы) и экологии (приуроченность к разным кормовым растениям); у некоторых орехотворок особи партеногенетических и обоеполых поколений столь различны, что принимались за разные виды и даже роды. Обычно (у многих тлей, дафний, коловраток и др.) летние партеногенетические поколения состоят из одних самок, а осенью появляются поколения из самцов и самок, которые оставляют на зиму оплодотворённые яйца. Многие виды животных, не имеющие самцов, способны к длительному размножению путём партеногенеза — так называемый константный партеногенез. У некоторых видов наряду с партеногенетической женской расой существует обоеполая раса (исходный вид), занимающая иногда др. ареал — так называемый географический партеногенез (бабочки чехлоноски, многие жуки, многоножки, моллюски, коловратки, дафнии, из позвоночных — ящерицы и др.).

По способности давать посредством партеногенеза самцов или самок различают: арренотокию, при которой из неоплодотворённых яиц развиваются только самцы (пчёлы и др. перепончатокрылые, червецы, клещи, из позвоночных — партеногенетические линии индеек); телитокию, при которой развиваются только самки (самый распространённый случай); дейтеротокию, при которой развиваются особи обоего пола (например, при случайном партеногенезе у бабочек; в обоеполом поколении при циклическом партеногенезе у дафний, коловраток, тлей).

Очень большое значение имеет цитогенетический механизм созревания неоплодотворённой яйцеклетки. Именно оттого, проходит ли яйцеклетка мейоз и уменьшение числа хромосом вдвое — редукцию (мейотический партеногенез) или не проходит (амейотический партеногенез), сохраняется ли при этом свойственное виду число хромосом вследствие выпадения мейоза (зиготический партеногенез) или это число восстанавливается после редукции слиянием ядра яйцеклетки с ядром направительного тельца или как-либо иначе (аутомиктический партеногенез), зависят в конечном счёте наследственная структура (генотип) партеногенетического зародыша и все его важнейшие наследственные особенности — пол, сохранение или утрата гетерозиса, приобретение гомозиготности и пр.

Партеногенез делят также на генеративный, или гаплоидный, и соматический (он может быть диплоидным и полиплоидным). При генеративном партеногенезе в делящихся клетках тела наблюдается гаплоидное число хромосом (n); этот случай относительно редок и сочетается с арренотокией (гаплоидные самцы — трутни пчёл). При соматическом партеногенезе в делящихся клетках тела наблюдается исходное диплоидное (2n) или полиплоидное (Зn, 4n, 5n, редко даже 6n и 8n) число хромосом. Часто в пределах одного вида имеется несколько рас, характеризующихся кратными числами хромосом,- так называемые полиплоидные ряды. По очень высокой частоте полиплоидии партеногенетические виды животных представляют резкий контраст с обоеполыми, у которых полиплоидия, наоборот, большая редкость. Полиплоидные раздельнополые виды животных, по-видимому, произошли путём партеногенез и отдалённой гибридизации.

Своеобразна форма партеногенеза — педогенез — партеногенетическое размножение в личиночном состоянии.

Искусственный партеногенез у животных был впервые получен русским зоологом А. А. Тихомировым. Он показал (1886), что неоплодотворённые яйца тутового шелкопряда можно побудить к развитию растворами сильных кислот, трением и др. физико-химическими раздражителями. В дальнейшем искусственный партеногенез был получен Ж. Лёбом и др. учёными у многих животных, главным образом у морских беспозвоночных (морские ежи и звёзды, черви, моллюски), а также у некоторых земноводных (лягушка) и даже млекопитающих (кролик). В конце 19 — начале 20 вв. опыты по искусственному партеногенезу привлекали особое внимание биологов, давая надежду с помощью этой физико-химической модели активации яйца проникнуть в сущность процессов оплодотворения. Искусственный партеногенез вызывают действием на яйца гипертонических или гипотонических растворов (так называемый осмотический партеногенез), уколом яйца иглой, смоченной гемолимфой (так называемый травматический П. земноводных), резким охлаждением и особенно нагревом (так называемый температурный партеногенез), а также действием кислот, щелочей и т.п. С помощью искусственного партеногенеза обычно удаётся получать лишь начальные стадии развития организма; полный партеногенез достигается редко, хотя известны случаи полного партеногенеза даже у позвоночных животных (лягушка, кролик). Способ массового получения полного партеногенеза, разработанный (1936) для тутового шелкопряда Б. Л. Астауровым, основан на точно дозированном кратковременном прогреве (до 46 С в течение 18 мин)извлечённых из самки неоплодотворённых яиц. Этот способ даёт возможность получать у тутового шелкопряда особи только женского пола, наследственно идентичные с исходной самкой и между собой. Получаемые при этом ди-, три- и тетраплоидные клоны можно размножать посредством партеногенеза неограниченно долго. При этом они сохраняют исходную гетерозиготность и «гибридную силу». Отбором получены клоны, размножающиеся посредством партеногенеза так же легко, как обоеполые породы посредством оплодотворения (более 90% вылупления активированных яиц и до 98% жизнеспособности). Партеногенез представляет разносторонний интерес для практики шелководства.

Партеногенез у растений. Партеногенез, распространённый среди семенных и споровых растений, относится обычно к константному типу; факультативный партеногенез обнаружен в единичных случаях (у некоторых видов ястребинки и у василистника Thalictrum purpurascens). Как правило, пол партеногенетически размножающихся растений — женский: у двудомных растений партеногенез связан с отсутствием или крайней редкостью мужских растений, у однодомных — с дегенерацией мужских цветков, отсутствием или абортивностью пыльцы. Как и при партеногенез е животных, различают: генеративный, или гаплоидный, партеногенез и соматический, который может быть диплоидным или полиплоидным. Генеративный партеногенез встречается у водорослей (кутлерия, спирогира, эктокарпус) и грибов (сапролегния, мукор, эндомицес). У цветковых растений он наблюдается только в экспериментальных условиях (табак, скерда, хлопчатник, хлебные злаки и многие др.). Соматический партеногенез встречается у водорослей (хара, кокконеис), у папоротников (марселия Друммонда) и у высших цветковых растений (хондрилла, манжетка, ястребинка, кошачья лапка, одуванчик и др.). Полиплоидный партеногенез у растений встречается очень часто; однако полиплоидия не является здесь особенностью партеногенетических видов, так как широко распространена и у обоеполых растений. К партеногенезу растений близки др. способы размножения — апогамия, при которой зародыш развивается не из яйцеклетки, а из др. клеток гаметофита, и апомиксис. Искусственный партеногенез у растений получен у некоторых водорослей и грибов действием гипертонических растворов, а также при кратковременном нагревании женских половых клеток. Австрийский учёный Э. Чермак получил (1935-48) искусственный партеногенез у цветковых растений (хлебные злаки, бобовые и многие др.), вызывая его раздражением рыльца убитой или чужеродной пыльцой или порошкообразными веществами (тальк, мука, мел и пр.). Советский учёный Е. М. Вермель получил (1972) диплоидный партеногенез у смородины, томатов и огурцов действием диметилсульфоксида.

К партеногенезу относят также своеобразные способы развития животных и растений — гиногенез и андрогенез, при которых яйцеклетка активируется к развитию проникающим спермием своего или близкого вида, но ядра яйцеклетки и спермия не сливаются, оплодотворение оказывается ложным, и зародыш развивается только с женским (гиногенез) или только с мужским (андрогенез) ядром.

7. Какое значение имеет в эволюции конъюгация гомологичных хромосом и кроссинговер между ними?

Конъюгация хромосом — сближение гомологичных хромосом при мейозе, вследствие чего между ними возможен взаимный обмен отдельными участками (кроссинговер).
Кроссинговер — обмен равными участками гомологичных конъюгирующих хромосом, происходящий в профазе первого мейоза и приводящий к перераспределению в них генов. Внешним проявлением кроссинговера являются хиазы.
Кроссинговер — один из механизмов наследственной изменчивости.

В профазе первого деления мейоза происходит спирализация хромосом. В конце профазы, когда спирализация заканчивается, хромосомы приобретают характерные для них форму и размеры. Хромосомы каждой пары, т.е. гомологичные, соединяются друг с другом по всей длине и скручиваются. Этот процесс соединения гомологичных хромосом носит название конъюгации. Во время конъюгации между некоторыми гомологичными хромосомами происходит обмен участками - генами (кроссинговер), что означает обмен наследственной информацией. После конъюгации гомологичные хромосомы отделяются друг от друга.

Когда хромосомы полностью разъединяются, образуется веретено деления, наступает метафаза мейоза и хромосомы располагаются в плоскости экватора. Затем наступает анафаза мейоза, и к полюсам клетки отходят не половинки каждой хромосомы, включающие одну хроматиду, как при митозе, а целые хромосомы, каждая из которых состоит из двух хроматид. Следовательно, в дочернюю клетку попадает только одна из каждой пары гомологичных хромосом.

Вслед за первым делением наступает второе деление мейоза, причем этому делению не предшествует синтез ДНК. Интерфаза перед вторым делением очень короткая. Профаза 2 непродолжительна. В метафазе 2 хромосомы выстраиваются в экваториальной плоскости клетки. В анафазе 2 осуществляется разделение их центромер и каждая хроматида становится самостоятельной хромосомой. В телофазе 2 завершается расхождение сестринских хромосом к полюсам и наступает деление клетки. В результате из двух гаплоидных клеток образуются четыре гаплоидные дочерние клетки.

Происходящий в мейозе перекрест хромосом, обмен участками, а также независимое расхождение каждой пары гомологичных хромосом определяет закономерности наследственной передачи признака от родителей потомству. Из каждой пары двух гомологичных хромосом (материнской и отцовской), входивших в хромосомный набор диплоидных организмов, в гаплоидном наборе яйцеклетки или сперматозоида содержится лишь одна хромосома. Она может быть:

1. отцовской хромосомой;

2. материнской хромосомой;

3. отцовской с участком материнской;

4. материнской с участком отцовской.

Эти процессы возникновения большого количества качественно различных половых клеток способствуют наследственной изменчивости.
В отдельных случаях вследствие нарушения процесса мейоза, при не расхождении гомологичных хромосом, половые клетки могут не иметь гомологичной хромосомы или, наоборот, иметь обе гомологичные хромосомы. Это приводит к тяжелым нарушениям в развитии организма или к его гибели.

8. Назовите виды регенерации на примерах животных и человека

РЕГЕНЕРАЦИЯ (от позднелат. regenera-tio -возрождение, возобновление) в биологии, восстановление организмом утраченных или повреждённых органов и тканей, а также восстановление целого организма из его части. Регенерация наблюдается в естественных условиях, а также может быть вызвана экспериментально. Регенерация у животных и человека - образование новых структур взамен удалённых либо погибших в результате повреждения (репаратинпая регенерация) или утраченных в процессе нормальной жизнедеятельности (физиологическая регенерация); вторичное развитие, вызванное утратой развившегося ранее органа. Регенерировавший орган может иметь такое же строение, как удалённый, отличаться от него или совсем не походить на него (атипичная регенерация. Термин « регенерация» предложен в 1712 франц. учёным Р. Реомюром, изучавшим регенерацию ног речного рака. У многих беспозвоночных возможна регенерация целого организма из кусочка тела. У высокоорганизованных животных это невозможно - регенерируют лишь отдельные органы или их части. Регенерация может происходить путём роста тканей на раневой поверхности, перестройки оставшейся части органа в новый или путём роста остатка органа без изменения его формы. Различают два вида регенерации - физиологическую и репаративную. Физиологическая регенерация - непрерывное обновление структур на клеточном (смена клеток крови, эпидермиса и др.) и внутриклеточном (обновление клеточных органелл) уровнях, которым обеспечивается функционирование органов и тканей. Репаративная регенерация- процесс ликвидации структурных повреждений после действия патогенных факторов. Оба вида регенерации не являются обособленными, не зависимыми друг от друга. Так, репаративная регенерация развертывается на базе физиологической, т. е. на основе тех же механизмов, и отличается лишь большей интенсивностью проявлений. Поэтому репаративную регенерацию следует рассматривать как нормальную реакцию организма на повреждение, характеризующуюся резким усилением физиологических механизмов воспроизведения специфических тканевых элементов того или иного органа. Значение регенерации для организма определяется тем, что на основе клеточного и внутриклеточного обновления органов обеспечивается широкий диапазон приспособительных колебаний их функциональной активности в меняющихся условиях окружающей среды, а также восстановление и компенсация нарушенных под воздействием различных патогенных факторов функций. Физиологическая и репаративная регенерации являются структурной основой всего разнообразия проявлений жизнедеятельности организма в норме и патологии. Процесс регенерации развертывается на разных уровнях организации - системном, органном, тканевом, клеточном, внутриклеточном. Осуществляется он путем прямого и непрямого деления клеток, обновления внутриклеточных органелл и их размножения. Обновление внутриклеточных структур и их гиперплазия являются универсальной формой регенерации, присущей всем без исключения органам млекопитающих и человека. Она выражается либо в форме собственно внутриклеточной регенерации, когда после гибели части клетки ее строение восстанавливается за счет размножения сохранившихся органелл, либо в виде увеличения числа органелл (компенсаторная гиперплазия органелл) в одной клетке при гибели другой. Восстановление исходной массы органа после его повреждения осуществляется различными путями. В одних случаях сохранившаяся часть органа остается неизмененной или малоизмененной, а недостающая его часть отрастает от раневой поверхности в виде четко отграниченного регенерата. Такой способ восстановления утраченной части органа называют эпиморфозом. В других случаях происходит перестройка оставшейся части органа, в процессе которой он постепенно приобретает исходные форму и размеры. Этот вариант процесса регенерации называют морфаллаксисом. Чаще эпиморфоз и морфаллаксис встречаются в различных сочетаниях. Наблюдая увеличение размеров органа после его повреждения, прежде говорили о его компенсаторной гипертрофии. Цитологический анализ этого процесса показал, что в его основе лежит размножение клеток, т. е. регенераторная реакция. В связи с этим процесс получил название «регенерационная гипертрофия». Степень и формы выражения регенерационной способности неодинаковы у разных животных. Ряд простейших, кишечнополостных, плоских червей, немертин, кольчатых червей, иглокожих, полухордовых и личиночно-хордовых обладают способностью восстанавливать из отдельного фрагмента или кусочка тела целый организм. Многие представители этих же групп животных способны восстанавливать только большие участки тела (напр., головной или хвостовой его концы). Другие восстанавливают лишь отдельные утраченные органы или их часть (регенерация ампутированных конечностей, усиков, глаз - у ракообразных; частей ноги, мантии, головы, глаз, щупальцев, раковины - у моллюсков; конечностей, хвоста, глаз, челюстей - у хвостатых амфибий и др.). Проявления регенерационной способности у высокоорганизованных животных, а также человека отличаются значительным разнообразием - могут восстанавливаться крупные части внутренних органов (напр., печени), мышцы, кости, кожа и др., а также отдельные клетки после гибели части их цитоплазмы и органелл.

9. С помощью какого типа деления идет дробление оплодотворенной клетки?

Дробление оплодотворенной клетки идет с помощью мейоза – способ деления клетки, в результате которого происходит уменьшение (редукция) числа хромосом в дочерних клетках; основное звено образования половых клеток. В ходе мейоза одна диплоидная клетка (содержит 2 набора хромосом) после двух последовательных делений дает начало 4 гаплоидным (содержат по одному набору хромосом) половым клеткам. При слиянии мужских и женских половых клеток диплоидный набор хромосом восстанавливается.

10. Чем опасно радиоактивное излучение?

Основную часть ионизирующего облучения человек получает от естественных источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения попадают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре.

Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении
. Или же они могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма. Такой способ облучения называют внутренним .

Радиация по самой своей природе вредна для жизни. Малые дозы облучения могут «запустить» не до конца еще изученную цепь событий, приводящих к раку или генетическим повреждениям. При больших дозах радиация может разрушать клетки, повреждать ткани органов и явиться причиной скорой гибели организма.

Повреждения, вызываемые большими дозами облучения, обыкновенно проявляются в течение нескольких часов или дней. Раковые заболевания, однако, проявляются спустя много лет после облучения, - как правило, не ранее чем через одно-два десятилетия. А врожденные пороки развития и другие наследственные болезни, вызываемые повреждением генетического аппарата, по определению проявляются лишь в следующем или последующих поколениях: это дети, внуки и более отдаленные потомки индивидуума, подвергшегося облучению.

Под действием ионизирующей радиации разрушаются сложные молекулы и клеточные структуры, что приводит к лучевому поражению организма.

В то время как идентификация быстро проявляющихся («острых») последствий от действия больших доз облучения не составляет труда, обнаружить отдаленные последствия от малых доз облучения почти всегда оказывается очень трудно. Частично это объясняется тем, что для их проявления должно пройти очень много времени. Но даже и обнаружив какие-то эффекты, требуется еще и доказать, что они объясняются действием радиации, поскольку и рак, и повреждения генетического аппарата могут быть вызваны не только радиацией, но и множеством других причин.

Чтобы вызвать острое поражение организма, дозы облучения должны превышать определенный уровень, но нет никаких оснований считать, что это правило действует в случае таких последствий, как рак или повреждение генетического аппарата. По крайней мере, теоретически для этого достаточно самой малой дозы. Однако, в то же время, никакая доза облучения не приводит к этим последствиям во всех случаях. Даже при относительно больших дозах облучения далеко не все люди обречены на эти болезни: действующие в организме человека репарационные механизмы обычно ликвидируют все повреждения. Точно так же любой человек, подвергшийся действию радиации, совсем не обязательно должен заболеть раком или стать носителем наследственных болезней; однако вероятность или риск наступления таких последствий у него больше, чем у человека, который не был облучен. И риск этот тем больше, чем больше доза облучения.

Острое поражение организма человека происходит при больших дозах облучения. Вообще говоря, радиация оказывает подобное действие, лишь начиная с некоторой минимальной, или «пороговой», дозы облучения.

Реакция тканей и органов человека на облучение неодинакова, причем различия очень велики. Величина же дозы, определяющая тяжесть поражения организма, зависит от того, получает ли ее организм сразу или в несколько приемов. Большинство органов успевает в той или иной степени залечить радиационные повреждения и поэтому лучше переносит серию мелких доз, нежели ту же суммарную дозу облучения, полученную за один прием.

Воздействие ионизирующего излучения на живые клетки

Заряженные частицы . Проникающие в ткани организма a- и b-частицы теряют энергию вследствие электрических взаимодействий с электронами тех атомов, близ которых они проходят. (g-излучение и рентгеновские лучи передают свою энергию веществу несколькими способами, которые в конечном счете также приводят к электрическим взаимодействиям.)

Электрические взаимодействия . За время порядка десяти триллионных секунды после того, как проникающее излучение достигнет соответствующего атома в ткани организма, от этого атома отрывается электрон. Последний заряжен отрицательно, поэтому остальная часть исходно нейтрального атома становится положительно заряженной. Этот процесс называется ионизацией. Оторвавшийся электрон может далее ионизировать другие атомы.

Физико-химические изменения . И свободный электрон, и ионизированный атом обычно не могут долго пребывать в таком состоянии и в течение следующих десяти миллиардных долей секунды участвуют в сложной цепи реакций, в результате которых образуются новые молекулы, включая и такие чрезвычайно реакционноспособные, как «свободные радикалы».

Химические изменения . В течение следующих миллионных долей секунды, образовавшиеся свободные радикалы реагируют как друг с другом, так и с другими молекулами и через цепочку реакций, еще не изученных до конца, могут вызвать химическую модификацию важных в биологическом отношении молекул, необходимых для нормального функционирования клетки.

Биологические эффекты . Биохимические изменения могут произойти как через несколько секунд, так и чрез десятилетия после облучения и явиться причиной немедленной гибели клеток или таких изменений в них, которые могут привести к раку.

Разумеется, если доза облучения достаточно велика, облученный человек погибнет. Во всяком случае, очень большие дозы облучения порядка 100 Гр вызывают настолько серьезное поражение центральной нервной системы, что смерть, как правило, наступает в течение нескольких часов или дней. При дозах облучения от 10 до 50 Гр при облучении всего тела поражение центральной нервной системы может оказаться не настолько серьезным, чтобы привести к летальному исходу, однако облученный человек, скорее всего, все равно умрет через одну-две недели от кровоизлияний в желудочно-кишечном тракте. При еще меньших дозах может не произойти серьезных повреждений желудочного тракта или организм с ними справится, и тем не менее, смерть может наступить через один-два месяца, с момента облучения главным образом из-за разрушения клеток красного костного мозга - главного компонента кроветворной системы организма: от дозы 3-5 Гр при облучении всего тела умирает примерно половина всех облученных. Таким образом, в этом диапазоне доз облучения большие дозы отличаются от меньших лишь тем, что смерть в первом случае наступает раньше, а во втором - позже.

В организме человека ионизирующие воздействия вызывают цепочку обратимых и необратимых изменений. Пусковым механизмом воздействия являются процессы ионизации и возбуждения атомов и молекул в тканях. Важную роль в формировании биологических эффектов играют свободные радикалы Н и ОН, которые образуются в результате радиолиза воды (в организме человека содержится до 70 % воды). Обладая высокой активностью, они вступают в химические реакции с молекулами белка, ферментов и других элементов биологической ткани, что приводит к нарушению биохимических процессов в организме. В процесс вовлекаются сотни и тысячи молекул, не затронутых излучением. В результате нарушаются обменные процессы, замедляется и прекращается рост тканей, возникают новые химические соединения, не свойственные организму. Это приводит к нарушению жизнедеятельности отдельных функций органов и систем организма. Под влиянием ионизирующих излучений в организме происходит нарушение функции кроветворных органов, увеличение проницаемости и хрупкости сосудов, расстройство желудочно-кишечного тракта, снижение сопротивляемости организма, его истощение, перерождение нормальных клеток в злокачественные и др. Эффекты развиваются в течение разных промежутков времени: от долей секунд до многих часов, дней, лет.

Радиационные эффекты принято делить на соматические и генетические. Соматические эффекты проявляются в форме острой и хронической лучевой болезни, локальных лучевых повреждений, например, ожогов, а также в виде отдаленных реакций организма, таких как лейкоз, злокачественные опухоли, раннее старение организма. Генетические эффекты могут проявиться в последующих поколениях.

Острые поражения развиваются при однократном равномерном гамма-облучении всего тела и поглощенной дозе свыше 0,25 Гр. При дозе 0,25…0,5 Гр могут наблюдаться временные изменения в крови, которые быстро нормализуются. В интервале дозы 0,5… 1,5 Гр возникает чувство усталости, менее чем у 10 % облученных может наблюдаться рвота, умеренные изменения в крови. При дозе 1,5…2,0 Гр наблюдается легкая форма острой лучевой болезни, которая проявляется продолжительным снижением числа лимфоцитов в крови (лимфопенией), возможна рвота в первые сутки после облучения. Смертельные исходы не регистрируются.

Лучевая болезнь средней тяжести возникает при дозе 2,5…4,0 Гр. Почти у всех в первые сутки - тошнота, рвота, резко снижается содержание лейкоцитов в крови, появляются подкожные кровоизлияния, в 20 % случаев возможен смертельный исход, смерть наступает через 2…6 недель после облучения.

При дозе 4,0…6,0 Гр развивается тяжелая форма лучевой болезни, приводящая в 50 % случаев к смерти в течение первого месяца. При дозах, превышающих 6,0…9,0 Гр, почти в 100 % случаев крайне тяжелая форма лучевой болезни заканчивается смертью из-за кровоизлияния или инфекционных заболеваний-.

Приведенные данные относятся к случаям, когда отсутствует лечение. В настоящее время имеется ряд противолучевых средств, которые при комплексном лечении позволяют исключить летальный исход при дозах около 10 Гр.

Хроническая лучевая болезнь может развиться при непрерывном или повторяющемся облучении в дозах, существенно ниже тех, которые вызывают острую форму. Наиболее характерными признаками хронической формы являются изменения в крови, нарушения со стороны нервной системы, локальные поражения кожи, повреждения хрусталика, снижение иммунитета организма.

Степень воздействия радиации зависит от того, является облучение внешним или внутренним (при попадании радиоактивного изотопа внутрь организма). Внутреннее облучение возможно при вдыхании, заглатывании радиоизотопов и проникновении их в организм человека через кожу. Некоторые вещества поглощаются и накапливаются в конкретных органах, что приводит к высоким локальным дозам радиации. Например, кальций, радий, стронций накапливаются в костях, изотопы иода вызывают повреждение щитовидной железы, редкоземельные элементы - преимущественно опухоли печени. Равномерно распределяются изотопы цезия, рубидия, вызывая угнетение кроветворения, повреждение семенников, опухоли мягких тканей. При внутреннем облучении наиболее опасны альфа-излучающие изотопы полония и плутония.
Целостность и дискретность живых систем как основа представлений об уровнях организации живой материи. Ступени организации по сложности СИСТЕМНО-СТРУКТУРНАЯ ОРГАНИЗАЦИЯ И САМООРГАНИЗАЦИЯ В ЖИВОЙ ПРИРОДЕ РАЗНООБРАЗИЕ КАК НЕОБХОДИМОСТЬ ЖИВОЙ ПРИРОДЫ Роль АТФ в микробном метаболизме, механизмы биосинтеза АТФ



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама