THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Трифанова Марина Анатольевна
учитель математики, МОУ "Гимназия № 48 (многопрофильная)", г. Талнах

Триединая цель урока :

Образовательная:
систематизация и обобщение знаний по решению уравнений высших степеней.
Развивающая:
содействовать развитию логического мышления, умения самостоятельно работать, навыков взаимоконтроля и самоконтроля, умений говорить и слушать.
Воспитывающая:
выработка привычки к постоянной занятости, воспитание отзывчивости, трудолюбия, аккуратности.

Тип урока :

урок комплексного применения знаний, умений и навыков.

Форма урока :

проветривание, физминутка, разнообразные формы работы.

Оборудование:

опорные конспекты, карточки с заданиями, матрица мониторинга урока.

ХОД УРОКА

I. Организационный момент

  1. Сообщение цели урока учащимся.
  2. Проверка домашнего задания (Приложение 1). Работа с опорным конспектом (Приложение 2).

На доске написаны уравнения и ответы для каждого из них. Учащиеся проверяют ответы и дают краткий анализ решения каждого уравнения или отвечают на вопросы учителя (фронтальный опрос). Самоконтроль – учащиеся выставляют себе оценки и сдают тетради на проверку учителю для коррекции оценок или их утверждения. Школа оценок записана на доске:

“5+” - 6 уравнений;
“5” - 5 уравнений;
“4” - 4 уравнения;
“3” - 3 уравнения.

Вопросы учителя по домашнему заданию:

1 уравнение

  1. Какая замена переменных сделана в уравнении?
  2. Какое уравнение получено после замены переменных?

2 уравнение

  1. На какой многочлен делили обе части уравнения?
  2. Какая замена переменных была получена?

3 уравнение

  1. Какие многочлены необходимо перемножить для упрощения решения данного уравнения?

4 уравнение

  1. Назвать функцию f(х).
  2. Как были найдены остальные корни?

5 уравнение

  1. Сколько было получено промежутков для решения уравнения?

6 уравнение

  1. Какими способами можно было решить данное уравнение?
  2. Какой способ решения более рациональный?

II. Работа по группам – основная часть урока.

Класс делится на 4 группы. Каждой группе дается карточка с теоретическим и практическим (Приложение 3) вопросами: “Разобрать предложенный способ решения уравнения и объяснить его на данном примере”.

  1. Работа в группе 15 минут.
  2. На доске записаны примеры (доска разделена на 4 части).
  3. Отчет группы проходит 2 – 3 минуты.
  4. Учитель корректирует отчеты групп и помогает при затруднении.

Работа в группах продолжается по карточкам № 5 – 8. На каждое уравнение дается 5 минут на обсуждение в группе. Затем у доски идет отчет по данному уравнению – краткий анализ решения. Уравнение может быть решено не до конца – дорабатывается дома, но последовательность его решения в классе обговаривается вся.

III. Самостоятельная работа. Приложение 4 .

  1. Каждый учащийся получает индивидуальное задание.
  2. Работа по времени занимает 20 минут.
  3. За 5 минут до конца урока учитель дает открытые ответы для каждого уравнения.
  4. Учащиеся меняются по кругу тетрадями и проверяют ответы у товарища. Выставляют оценки.
  5. Тетради сдаются учителю на проверку и корректировку оценок.

IV. Итог урока.

Домашнее задание.

Оформить решение незаконченных уравнений. Подготовиться к контрольному срезу.

Выставление оценок.

Методы решения уравнений: n n n Замена уравнения h(f(x)) = h(g(x)) уравнением f(x) = g(x) Разложение на множители. Введение новой переменной. Функционально – графический метод. Подбор корней. Применение формул Виета.

Замена уравнения h(f(x)) = h(g(x)) уравнением f(x) = g(x). Метод можно применять только в том случае, когда y = h(x) – монотонная функция, которая каждое свое значение принимает по одному разу. Если функция немонотонная, то возможна потеря корней.

Решить уравнение (3 x + 2)²³ = (5 x – 9)²³ y = x ²³ возрастающая функция, поэтому от уравнения (3 x + 2)²³ = (5 x – 9)²³ можно перейти к уравнению 3 x + 2 = 5 x – 9, откуда находим x = 5, 5. Ответ: 5, 5.

Разложение на множители. Уравнение f(x)g(x)h(x) = 0 можно заменить совокупностью уравнений f(x) = 0; g(x) = 0; h(x) = 0. Решив уравнения этой совокупности, нужно взять те их корни, которые принадлежат области определения исходного уравнения, а остальные отбросить как посторонние.

Решить уравнение x³ – 7 x + 6 = 0 Представив слагаемое 7 x в виде x + 6 x, получим последовательно: x³ – x – 6 x + 6 = 0 x(x² – 1) – 6(x – 1) = 0 x(x – 1)(x + 1) – 6(x – 1) = 0 (x – 1)(x² + x – 6) = 0 Теперь задача сводится к решению совокупности уравнений x – 1 = 0; x² + x – 6 = 0. Ответ: 1, 2, – 3.

Введение новой переменной. Если уравнение y(x) = 0 удалось преобразовать к виду p(g(x)) = 0, то нужно ввести новую переменную u = g(x), решить уравнение p(u) = 0, а затем решить совокупность уравнений g(x) = u 1; g(x) = u 2; … ; g(x) = un , где u 1, u 2, … , un – корни уравнения p(u) = 0.

Решить уравнение Особенностью этого уравнения является равенство коэффициентов его левой части, равноудаленных от ее концов. Такие уравнения называют возвратными. Поскольку 0 не является корнем данного уравнения, делением на x² получаем

Введем новую переменную Тогда Получаем квадратное уравнение Так корень y 1 = – 1 можно не рассматривать. Получим Ответ: 2, 0, 5.

Решите уравнение 6(x² – 4)² + 5(x² – 4)(x² – 7 x +12) + (x² – 7 x + 12)² = 0 Данное уравнение может быть решено как однородное. Поделим обе части уравнения на (x² – 7 x +12)² (ясно, что значения x такие, что x² – 7 x +12=0 решениями не являются). Теперь обозначим Имеем Отсюда Ответ:

Функционально – графический метод. Если одна из функций у = f(x), y = g(x) возрастает, а другая – убывает, то уравнение f(x) = g(x) либо не имеет корней, либо имеет один корень.

Решить уравнение Достаточно очевидно, что x = 2 – корень уравнения. Докажем, что это единственный корень. Преобразуем уравнение к виду Замечаем, что функция возрастает, а функция убывает. Значит, уравнение имеет только один корень. Ответ: 2.

Подбор корней n n n Теорема 1: Если целое число m является корнем многочлена с целыми коэффициентами, то свободный член многочлена делится на m. Теорема 2: Приведенный многочлен с целыми коэффициентами не имеет дробных корней. Теорема 3: – уравнение с целыми Пусть коэффициентами. Если число и дробь где p и q – целые числа несократима, является корнем уравнения, то p есть делитель свободного члена an , а q – делитель коэффициента при старшем члене a 0.

Теорема Безу. Остаток при делении любого многочлена на двучлен (x – a) равен значению делимого многочлена при x = a. Следствия теоремы Безу n n n n Разность одинаковых степеней двух чисел делится без остатка на разность этих же чисел; Разность одинаковых четных степеней двух чисел делится без остатка как на разность этих чисел, так и на их сумму; Разность одинаковых нечетных степеней двух чисел не делится на сумму этих чисел; Сумма одинаковых степеней двух не чисел делится на разность этих чисел; Сумма одинаковых нечетных степеней двух чисел делится без остатка на сумму этих чисел; Сумма одинаковых четных степеней двух чисел не делится как на разность этих чисел, так и на их сумму; Многочлен делится нацело на двучлен (x – a) тогда и только тогда, когда число a является корнем данного многочлена; Число различных корней многочлена, отличного от нуля, не более чем его степень.

Решить уравнение x³ – 5 x² – x + 21 = 0 Многочлен x³ – 5 x² – x + 21 имеет целые коэффициенты. По теореме 1 его целые корни, если они есть, находятся среди делителей свободного члена: ± 1, ± 3, ± 7, ± 21. Проверкой убеждаемся в том, что число 3 является корнем. По следствию из теоремы Безу многочлен делится на (x – 3). Таким образом, x³– 5 x² – x + 21 = (x – 3)(x²– 2 x – 7). Ответ:

Решить уравнение 2 x³ – 5 x² – x + 1 = 0 По теореме 1 целыми корнями уравнения могут быть только числа ± 1. Проверка показывает, что данные числа не являются корнями. Так как уравнение не является приведенным, то оно может иметь дробные рациональные корни. Найдем их. Для этого умножим обе части уравнения на 4: 8 x³ – 20 x² – 4 x + 4 = 0 Сделав подстановку 2 x = t, получим t³ – 5 t² – 2 t + 4 = 0. По тереме 2 все рациональные корни данного приведенного уравнения должны быть целыми. Их можно найти среди делителей свободного члена: ± 1, ± 2, ± 4. В данном случае подходит t = – 1. Следовательно По следствию из теоремы Безу многочлен 2 x³ – 5 x² – x + 1 делится на (x + 0, 5): 2 x³ – 5 x² – x + 1 = (x + 0, 5)(2 x² – 6 x + 2) Решив квадратное уравнение 2 x² – 6 x + 2 = 0, находим остальные корни: Ответ:

Решить уравнение 6 x³ + x² – 11 x – 6 = 0 По теореме 3 рациональные корни этого уравнения следует искать среди чисел Подставляя их поочередно в уравнение, найдем, что удовлетворяют уравнению. Ими и исчерпываются все корни уравнения. Ответ:

Найти сумму квадратов корней уравнения x³ + 3 x² – 7 x +1 = 0 По теореме Виета Заметим, что откуда

Укажите, каким методом можно решить каждое из данных уравнений. Решите уравнения № 1, 4, 15, 17.

Ответы и указания: 1. Введение новой переменной. 2. Функционально – графический метод. 3. Замена уравнения h(f(x)) = h(g(x)) уравнением f(x) = g(x). 4. Разложение на множители. 5. Подбор корней. 6 Функционально – графический метод. 7. Применение формул Виета. 8. Подбор корней. 9. Замена уравнения h(f(x)) = h(g(x)) уравнением f(x) = g(x). 10. Введение новой переменной. 11. Разложение на множители. 12. Введение новой переменной. 13. Подбор корней. 14. Применение формул Виета. 15. Функционально – графический метод. 16. Разложение на множители. 17. Введение новой переменной. 18. Разложение на множители.

1. Указание. Запишите уравнение в виде 4(x²+17 x+60)(x+16 x+60)=3 x², Разделите обе его части на x². Введите переменную Ответ: x 1 = – 8; x 2 = – 7, 5. 4. Указание. Прибавьте к левой части уравнения 6 y и – 6 y и запишите его в виде (y³ – 2 y²) + (– 3 y² + 6 y) + (– 8 y + 16) = (y – 2)(y² – 3 y – 8). Ответ:

14. Указание. По теореме Виета Так как – целые числа, то корнями уравнения могут быть только числа – 1, – 2, – 3. Ответ: 15. Ответ: – 1. 17. Указание. Разделите обе части уравнения на x² и запишите его в виде Введите переменную Ответ: 1; 1, 5; 2; 3.

Библиография. n n n Колмогоров А. Н. «Алгебра и начала анализа, 10 – 11» (М. : Просвещение, 2003). Башмаков М. И. «Алгебра и начала анализа, 10 – 11» (М. : Просвещение, 1993). Мордкович А. Г. «Алгебра и начала анализа, 10 – 11» (М. : Мнемозина, 2003). Алимов Ш. А. , Колягин Ю. М. и др. «Алгебра и начала анализа, 10 – 11» (М. : Просвещение, 2000). Галицкий М. Л. , Гольдман А. М. , Звавич Л. И. «Сборник задач по алгебре, 8 – 9» (М. : Просвещение, 1997). Карп А. П. «Сборник задач по алгебре и началам анализа, 10 – 11» (М. : Просвещение, 1999). Шарыгин И. Ф. «Факультативный курс по математике, решение задач, 10» (М. : Просвещение. 1989). Скопец З. А. «Дополнительные главы по курсу математики, 10» (М. : Просвещение, 1974). Литинский Г. И. «Уроки математики» (М. : Аслан, 1994). Муравин Г. К. «Уравнения, неравенства и их системы» (Математика, приложение к газете «Первое сентября» , № 2, 3, 2003). Колягин Ю. М. «Многочлены и уравнения высших степеней» (Математика, приложение к газете «Первое сентября» , № 3, 2005).

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. В математике довольно часто встречаются уравнения высших степеней с целыми коэффициентами. Чтобы решить данного рода уравнения необходимо:

Определить рациональные корни уравнения;

Разложить на множители многочлен, который находится в левой части уравнения;

Найти корни уравнения.

Допустим, нам дано уравнение следующего вида:

Найдем все действительные его корни. Умножим левую и правую части уравнения на \

Выполним замену переменных \

Таким образом, у нас получилось приведенное уравнение четвертой степени, которое решается по стандартному алгоритму: проверяем делители, проводим деление и в результате выясняем, что уравнение имеет два действительных корня \ и два комплексных. Получим следующий ответ нашего уравнения четвертой степени:

Где можно решить уравнение высших степеней онлайн решателем?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

При решении алгебраических уравнений часто приходится разлагать многочлен на множители. Разложить многочлен на множители – это значит представить его в виде произведения двух или нескольких многочленов. Некоторые методы разложения многочленов мы употребляем достаточно часто: вынесение общего множителя, применение формул сокращенного умножения, выделение полного квадрата, группировка. Рассмотрим ещё некоторые методы.

Иногда при разложении многочлена на множители бывают полезными следующие утверждения:

1) если многочлен, с целыми коэффициентами имеет рациональный корень (где - несократимая дробь,то -делитель свободного члена а делитель старшего коэффициента:

2) Если каким-либо образом подобрать корень многочлена степени, то многочлен можно представить в виде где многочлен степени

Многочлен можно найти либо делением многочлена на двучлен «столбиком», либо соответствующей группировку слагаемых многочлена и выделением из них множителя либо методом неопределенных коэффициентов.

Пример. Разложить на множители многочлен

Решение. Поскольку коэффициент при х4 равен 1, то рациональные корни данного многочлена, существуют, являются делителями числа 6, т. е. могут быть целыми числами ±1, ±2, ±3, ±6. Обозначим данный многочлен через Р4(х). Так как Р Р4 (1) = 4 и Р4(-4) = 23, то числа 1 и -1 не являются корнями многочлена РА{х). Поскольку Р4(2) = 0, то х = 2 является корнем многочлена Р4(х), и, значит, данный многочлен делится на двучлен х - 2. Поэтому х4 -5х3 +7х2 -5х +6 х-2 х4 -2х3 х3 -3х2 +х-3

3х3 +7х2 -5х +6

3х3 +6х2 х2 - 5х + 6 х2- 2х

Следовательно, Р4(х) = (х - 2)(х3 - Зх2 + х - 3). Так как xz - Зх2 + х - 3 = х2 (х - 3) + (х - 3) = (х - 3)(х2 + 1), то х4 - 5х3 + 7х2 - 5х + 6 = (х - 2)(х - 3)(х2 + 1).

Метод введения параметра

Иногда при разложении многочлена на множители помогает метод введения параметра. Суть этого метода поясним на следующем примере.

Пример. х3 –(√3 + 1) х2 + 3.

Решение. Рассмотрим многочлен с параметром а: х3 - (а + 1)х2 + а2, который при а = √3 превращается в заданный многочлен. Запишем этот многочлен как квадратный трехчлен относительно а: аг - ах2 + (х3 - х2).

Так как корни этого квадратного относительно а трехчлена есть а1 = х и а2 = х2 - х, то справедливо равенство а2 - ах2 + {xs - х2) = {а – х)(а - х2 + х). Следовательно, многочлен х3 - (√3 + 1)х2 + 3 разлагается на множители √3 – х и √3 - х2 + х, т. е.

х3 – (√3+1)х2+3=(х-√3)(х2-х-√3).

Метод введения новой неизвестной

В некоторых случаях путем замены выражения f{x), входящего в многочлен Рп{х), через у можно получить многочлен относительно у, который уже легко разложить на множители. Затем после замены у на f{x) получаем разложение на множители многочлена Рп{х).

Пример. Разложить на множители многочлен х(х+1)(х+2)(х+3)-15.

Решение. Преобразуем данный многочлен следующим образом: х(х+1)(х+2)(х+3)-15= [х (х + 3)][(х + 1)(х + 2)] - 15 =(х2 + 3х)(х2 + 3х + 2) - 15.

Обозначим х2 + 3х через у. Тогда имеем у(у + 2) - 15 = у2 + 2у - 15 = у2 + 2у + 1 - 16 = (у + 1)2 - 16 = (у + 1 + 4)(у + 1 - 4)= (у+ 5)(у - 3).

Поэтому х(х + 1)(х+ 2)(х + 3) - 15 = (х2+ 3х + 5)(х2 + 3х - 3).

Пример. Разложить на множители многочлен (х-4)4+(х+2)4

Решение. Обозначим х- 4+х+2 = х - 1 через у.

(х - 4)4 + (х + 2)2= (у - 3)4 + (у + 3)4 = у4 - 12у3 +54у3 - 108у + 81 + у4 + 12у3 + 54у2 + 108у + 81 =

2у4 + 108у2 + 162 = 2(у4 + 54у2 + 81) = 2[(уг + 27)2 - 648] = 2 (у2 + 27 - √б48)(у2 + 27+√б48)=

2((х-1)2+27-√б48)((х-1)2+27+√б48)=2(х2-2х + 28- 18√ 2)(x2- 2x + 28 + 18√ 2).

Комбинирование различных методов

Часто при разложении многочлена на множители приходится применять последовательно несколько из рассмотренных выше методов.

Пример. Разложить на множители многочлен х4 - 3х2 + 4х-3.

Решение. Применяя группировку, перепишем многочлен в виде x4 - 3х2 + 4х - 3 = (х4 – 2х2) – (х2 -4х + 3).

Применяя к первой скобке метод выделения полного квадрата, имеем х4 - 3х3 + 4х - 3 = (х4 - 2 ·1· х2 + 12) - (х2 -4х + 4).

Применяя формулу полного квадрата, можно теперь записать, что х4 – 3х2 + 4x - 3 = (х2 -1)2 - (х - 2)2.

Наконец, применяя формулу разности квадратов, получим, что х4 - 3х2 +4x - 3 = (х2 - 1 + х - 2)(х2 - 1 - х + 2) =(х2+х-3)(х2 -x + 1).

§ 2. Симметрические уравнения

1. Симметрические уравнения третьей степени

Уравнения вида ах3 + bх2 + bх + а = 0, а ≠ 0 (1) называются симметрическими уравнениями третьей степени. Поскольку ах3 + bх2 + bх + а = а(х3 + 1) + bх (х + 1) =(х+1)(ах2+(b-а)х+а), то уравнение (1) равносильно совокупности уравнений х + 1 = 0 и ах2 + (b-а)х + а = 0, решить которую не представляет труда.

Пример 1. Решить уравнение

3х3 + 4х2 + 4х + 3 = 0. (2)

Решение. Уравнение (2) является симметрическим уравнением третьей степени.

Поскольку 3х3 +4хг +4х + 3 = 3(х3 + 1) + 4х(х + 1) = (х+ 1)(3х2 - Зх + 3 + 4х) = (х + 1)(3х2 + х + 3), то уравнение (2) равносильно совокупности уравнений х + 1 = 0 и 3х3 + х +3=0.

Решение первого из этих уравнений есть х = -1, второе уравнение решений не имеет.

Ответ: х = -1.

2. Симметрические уравнения четвертой степени

Уравнение вида

(3) называется симметрическим уравнением четвертой степени.

Поскольку х = 0 не является корнем уравнения(3), то, разделив обе части уравнения(3) на х2, получим уравнение, равносильное исходному(3):

Перепишем уравнение (4) в виде:

В этом уравнение сделаем замену, тогда получим квадратное уравнение

Если уравнение (5) имеет 2 корня у1 и у2, то исходное уравнение равносильно совокупности уравнений

Если же уравнение (5) имеет один корень у0, то исходное уравнение равносильно уравнению

Наконец, если уравнение (5) не имеет корней, то и исходное уравнение также не имеет корней.

Пример 2. Решить уравнение

Решение. Данное уравнение является симметрическим уравнением четвертой степени. Так как х = 0 не является его корнем, то, разделив уравнение (6) на х2, получим равносильное ему уравнение:

Сгруппировав слагаемые, перепишем уравнение (7) в виде или в виде

Положив, получим уравнение имеющее два корня у1 = 2 и у2 = 3. Следовательно, исходное уравнение равносильно совокупности уравнений

Решение первого уравнения этой совокупности есть х1 = 1, а решение второго есть и.

Следовательно, исходное уравнение имеет три корня: х1, х2 и х3.

Ответ: х1=1,.

§3. Алгебраические уравнения

1. Понижение степени уравнения

Некоторые алгебраические уравнения заменой в них некоторого многочлена одной буквой могут быть сведены к алгебраическим уравнениям, степень которых меньше степени исходного уравнения и решение которых проще.

Пример 1. Решить уравнение

Решение. Обозначим через, тогда уравнение (1) можно переписать в виде Последнее уравнение имеет корни и Следовательно, уравнение (1) равносильно совокупности уравнений и. Решение первого уравнения этой совокупности есть и Решения второго уравнения есть

Решениями уравнения (1) являются

Пример 2. Решить уравнение

Решение. Умножив обе части уравнения на 12 и обозначив через,

Получим уравнение Перепишем это уравнение в виде

(3) и обозначив через перепишем уравнение (3) в виде Последнее уравнение имеет корни и Поэтому получаем, что уравнение (3) равносильно совокупности двух уравнений и Решения этой совокупности уравнений есть и т. е. уравнение (2) равносильно совокупности уравнений и (4)

Решениями совокупности (4) является и, они и являются решениями уравнения (2).

2. Уравнения вида

Уравнение

(5) где -данные числа, можно свести к биквадратному уравнению с помощью замены неизвестной т. е. замены

Пример 3. Решить уравнение

Решение. Обозначим через,т. е. сделаем замену переменных или Тогда уравнение (6) можно переписать в виде или, применяя формулу, в виде

Поскольку корни квадратного уравнения есть и то решения уравнения (7) есть решения совокупности уравнений и. Это совокупность уравнений имеет два решения и Следовательно, решения уравнения (6) есть и

3. Уравнения вида

Уравнение

(8) где числа α, β, γ, δ, и Α таковы, что α

Пример 4. Решить уравнение

Решение. Сделаем замену неизвестных т. е. y=x+3 или x = y – 3. Тогда уравнение (9) можно переписать в виде

(y-2)(y-1)(y+1)(y+2)=10, т. е. в виде

(y2- 4)(y2-1)=10(10)

Биквадратное уравнение (10) имеет два корня. Следовательно, уравнение (9) так же имеет два корня:

4. Уравнения вида

Уравнение, (11)

Где, не имеет корня x = 0, поэтому, разделив уравнение (11) на x2 , получим равносильное ему уравнение

Которое после замены неизвестной перепишется в виде квадратного уравнения, решение которого не представляет трудностей.

Пример 5. Решить уравнение

Решение. Так как ч = 0 не является корнем уравнения (12), то, разделив его на x2, получим равносильное ему уравнение

Делая замену неизвестной, получим уравнение (y+1)(y+2)=2, которое имеет два корня: y1 = 0 и y1 = -3. Следовательно, исходное уравнение (12) равносильно совокупности уравнений

Эта совокупность имеет два корня: x1= -1 и x2 = -2.

Ответ: x1= -1, x2 = -2.

Замечание. Уравнение вида,

У которого, всегда можно привести к виду (11) и, более того, считая α > 0 и λ > 0 к виду.

5. Уравнения вида

Уравнение

,(13) где числа, α, β, γ, δ, и Α таковы, что αβ = γδ ≠ 0, можно переписать, перемножив первую скобку со второй, а третью с четвертой, в виде т. е. уравнение (13) теперь записано в виде (11), и его решение можно проводить так же, как и решение уравнения (11).

Пример 6. Решить уравнение

Решение. Уравнение (14) имеет вид (13) , поэтому перепишем его в виде

Так как х = 0 не есть решение этого уравнения, то, разделив его обе части на х2, получим равносильное исходное уравнение. Делая замену переменных, получаем квадратное уравнение, решение которого есть и. Следовательно, исходное уравнение (14) равносильно совокупности уравнений и.

Решение первого уравнения этой совокупности есть

Второе уравнение этой совокупности решений не имеет. Итак, исходное уравнение имеет корни х1 и х2.

6. Уравнения вида

Уравнение

(15) где числа a, b, c, q, A таковы, что, не имеет корня х = 0, поэтому, разделив уравнение (15) на х2. получим равносильное ему уравнение, которое после замены неизвестной перепишется в виде квадратного уравнения, решение которого не представляет трудностей.

Пример 7. Решение уравнения

Решение. Так как х = 0 не является корнем уравнения (16), то, разделив обе его части на х2, получим уравнение

, (17) равносильное уравнению (16). Сделав замену неизвестной, уравнение (17) перепишем в виде

Квадратное уравнение (18) имеет 2 корня: у1 = 1 и у2 = -1. Поэтому уравнение (17) равносильно совокупности уравнений и (19)

Совокупность уравнений (19) имеет 4 корня: ,.

Они будут корнями уравнения (16).

§4. Рациональные уравнения

Уравнения вида = 0, где Н(х) и Q(x) – многочлены, называются рациональными.

Найдя корни уравнения Н(х) = 0, затем надо проверить, какие из них не являются корнями уравнения Q(x) = 0. Эти корни и только они будут решениями уравнения.

Рассмотрим некоторые методы решения уравнения вида = 0.

1. Уравнения вида

Уравнение

(1) при некоторых условиях на числа может быть решено следующим образом. Группируя члены уравнения (1) по два и суммируя каждую пару, надо получить в числителе многочлены первой или нулевой степени, отличающиеся только числовыми множителями, а в знаменателях – трехчлены с одинаковыми двумя членами, содержащими х, тогда после замены переменных получение уравнение будет либо иметь также вид (1), но с меньшим числом слагаемых, либо будет равносильно совокупности двух уравнений, одно из которых будет первой степени, а второе будет уравнением вида (1), но с меньшим числом слагаемых.

Пример. Решить уравнение

Решение. Сгруппировав в левой части уравнения (2) первый член с последним, а второй с предпоследним, перепишем уравнение (2) в виде

Суммируя в каждой скобке слагаемые, перепишем уравнение (3) в виде

Так как не есть решение уравнения (4), то, разделив это уравнение на, получим уравнение

, (5) равносильное уравнению (4). Сделаем замену неизвестного, тогда уравнение (5) перепишется в виде

Таким образом, решение уравнения (2) с пятью слагаемыми в левой части сведено к решению уравнения (6) того же вида, но с тремя слагаемыми в левой части. Суммируя все члены в левой части уравнения (6), перепишем его в виде

Решения уравнения есть и. Ни одно из этих чисел не обращает в нуль знаменатель рациональной функции в левой части уравнения (7). Следовательно, уравнение (7) имеет эти два корня, и поэтому исходное уравнение (2) равносильно совокупности уравнений

Решения первого уравнения этой совокупности есть

Решения второго уравнения из этой совокупности есть

Поэтому исходное уравнение имеет корни

2. Уравнения вида

Уравнение

(8) при некоторых условиях на числа можно решить так: надо выделить целую часть в каждой из дробей уравнения, т. е. заменить уравнение (8) уравнением

Свести его к виду (1) и затем решить его способом, описанным в предыдущем пункте.

Пример. Решить уравнение

Решение. Запишем уравнение (9) в виде или в виде

Суммируя слагаемые в скобках, перепишем уравнение (10) в виде

Делая замену неизвестного, перепишем уравнение (11) в виде

Суммируя члены в левой части уравнения (12), перепишем его в виде

Легко видеть, что уравнение (13) имеет два корня: и. Следовательно, исходное уравнение (9) имеет четыре корня:

3) Уравнения вида.

Уравнение вида (14) при некоторых условиях на числа можно решать так: разложив (если это, конечно, возможно) каждую из дробей в левой части уравнения (14) в суму простейших дробей

Свести уравнение (14) к виду (1), затем, проведя удобную перегруппировку членов полученного уравнения, решать его методом, изложенном в пункте 1).

Пример. Решить уравнение

Решение. Поскольку и, то, умножив числитель каждой дроби в уравнении (15) на 2 и заметив, что уравнение (15) можно записать в виде

Уравнение (16) имеет вид (7). Перегруппировав слагаемые в этом уравнении, перепишем его в виде или в виде

Уравнение (17) равносильно совокупности уравнений и

Для решения второго уравнения совокупности (18) сделаем замену неизвестного Тогда оно перепишется в виде или в виде

Суммируя все члены в левой части уравнения (19),перепишите его в виде

Так как уравнение не имеет корней, то уравнение (20) их также не имеет.

Первое уравнение совокупности (18) имеет единственный корень Поскольку этот корень входит в ОДЗ второго уравнения совокупности (18), то он является единственным корнем совокупности (18), а значит, и исходного уравнения.

4. Уравнения вида

Уравнение

(21) при некоторых условиях на числа и A после представления каждого слагаемого в левой части в виде может быть сведено к виду (1).

Пример. Решить уравнение

Решение. Перепишем уравнение (22) в виде или в виде

Таким образом, уравнение (23) сведено к виду (1). Теперь, группируя первый член с последним, а второй с третьим, перепишем уравнение (23) в виде

Это уравнение равносильно совокупности уравнений и. (24)

Последнее уравнение совокупности (24) можно переписать в виде

Решения этого уравнения есть и, так как входит в ОДЗ второго уравнения совокупности (30), то совокупность (24) имеет три корня:. Все они есть решения исходного уравнения.

5. Уравнения вида.

Уравнение вида (25)

При некоторых условиях на числа заменой неизвестного можно свести к уравнению вида

Пример. Решить уравнение

Решение. Так как не является решением уравнения (26), то разделив числитель и знаменатель каждой дроби в левой части на, перепишем его в виде

Сделав замену переменных перепишем уравнение (27) в виде

Решая уравнение (28) есть и. Поэтому уравнение (27) равносильно совокупности уравнений и. (29)

«Методы решения уравнений высших степеней»

( Киселёвские чтения )

Учитель математики Афанасьева Л.А

МКОУ Верхнекарачанская СОШ

Грибановского района, Воронежской области

2015 год

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека.

Известный немецкий математик Курант писал: «На протяжении двух с лишним тысячелетий обладание некоторыми, не слишком поверхностными, знаниями в области математики входило необходимой составной частью в интеллектуальный инвентарь каждого образованного человека». И среди этих знаний не последнее место принадлежит умению решать уравнения.

Уже в древности люди осознали, как важно научиться решать алгебраические уравнения. Около 4000 лет назад вавилонские ученые владели решением квадратного уравнения и решали системы двух уравнений, из которых одно – второй степени. С помощью уравнений решались разнообразные задачи землемерия, архитектуры и военного дела, к ним сводились многие и разнообразные вопросы практики и естествознания, так как точный язык математики позволяет просто выразить факты и соотношения, которые, будучи изложенными обычным языком, могут показаться запутанными и сложными. Уравнение одно из важнейших понятий математики. Развитие методов решения уравнений, начиная с зарождения математики как науки, долгое время было основным предметом изучения алгебры. И сегодня на уроках математики, начиная с первой ступени обучения, решению уравнений различных видов уделяется большое внимание.

Универсальной формулы для нахождения корней алгебраического уравнения n – ой степени нет. Многим, разумеется, приходила в голову заманчивая мысль найти для любой степени n формулы, которые выражали бы корни уравнения через его коэффициенты, то есть, решали бы уравнение в радикалах. Однако «мрачное средневековье» оказалось как нельзя более мрачным и в отношении обсуждаемой задачи – в течение целых семи столетий требуемых формул никто не нашёл! Только в 16 веке итальянским математикам удалось продвинуться дальше – найти формулы для n =3 и n =4 . Одновременно вопросом об общем решении уравнений 3-й степени занимались Сципион Даль Ферро, его ученик Фиори и Тарталья. В 1545 году вышла книга итальянского математика Д Кардано «Великое искусство, или О правилах алгебры», где наряду с другими вопросами алгебры рассматриваются общие способы решения кубических уравнений, а так же метод решения уравнений 4 – й степени, открытый его учеником Л. Феррари. Полное изложение вопросов, связанных с решением уравнений 3-й 4-й степеней, дал Ф. Виет. А в 20-х годах 19 века норвежский математик Н. Абель доказал, что корни уравнений 5-й и более высоких степеней не могут быть выражены через радикалы.

Процесс отыскания решений уравнения заключается обычно в замене уравнения равносильным. Замена уравнения равносильным основана на применении четырёх аксиом:

1. Если равные величины увеличить на одно и то же число, то результаты будут равны.

2. Если из равных величин вычесть одно и то же число, то результаты будут равны.

3. Если равные величины умножить на одно и то же число, то результаты будут равны.

4. Если равные величины разделить на одно и то же число, то результаты будут равны.

Поскольку левая часть уравнения Р(х) = 0 представляет собой многочлен n-й степени, то полезно напомнить следующие утверждения:

Утверждения о корнях многочлена и его делителях:

1. Многочлен n-й степени имеет число корней не превышающее число n, причем корни кратности m встречаются ровно m раз.

2. Многочлен нечетной степени имеет хотя бы один действительный корень.

3. Если α – корень Р(х), то Р n (х) = (х — α)·Q n — 1 (x), где Q n — 1 (x) – многочлен степени (n – 1).

4. Всякий целый корень многочлена с целыми коэффициентами является делителем свободного члена.

5. Приведенный многочлен с целыми коэффициентами не может иметь дробных рациональных корней.

6. Для многочлена третьей степени

Р 3 (х) = ах 3 + bx 2 + cx + d возможно одно из двух: либо он разлагается в произведение трех двучленов

Р 3 (x) = а (х — α)(х — β)(х — γ), либо разлагается в произведение двучлена и квадратного трехчлена Р 3 (x) = а(х — α)(х 2 + βх + γ).

7. Любой многочлен четвертой степени раскладывается в произведение двух квадратных трехчленов.

8. Многочлен f (x) делится на многочлен g(х) без остатка, если существует многочлен q(x), что f(x) = g(x)·q(x). Для деления многочленов применяется правило «деления уголком».

9. Для делимости многочлена P(x) на двучлен (x – c) необходимо и достаточно, чтобы с было корнем P(x) (Следствие теоремы Безу).

10. Теорема Виета: Если х 1 , х 2 , …, х n – действительные корни многочлена

Р(х) = а 0 х n + а 1 х n — 1 + … + а n , то имеют место следующие равенства:

х 1 + х 2 + … + х n = -а 1 /а 0 ,

х 1 · х 2 + х 1 · х 3 + … + х n — 1 · х n = a 2 /а 0 ,

х 1 · х 2 · х 3 + … + х n — 2 · х n — 1 · х n = -a 3 /а 0 ,

х 1 · х 2 · х 3 · х n = (-1) n a n /а 0 .

Решение примеров

Пример 1 . Найти остаток от деления Р(х) = х 3 + 2/3 x 2 – 1/9 на (х – 1/3).

Решение. По следствию из теоремы Безу: «Остаток от деления многочлена на двучлен (х — с) равен значению многочлена от с». Найдем Р(1/3) = 0. Следовательно, остаток равен 0 и число 1/3 – корень многочлена.

Ответ: R = 0.

Пример 2 . Разделить «уголком» 2х 3 + 3x 2 – 2х + 3 на (х + 2). Найти остаток и неполное частное.

Решение:

2х 3 + 3x 2 – 2х + 3| х + 2

2х 3 + 4x 2 2x 2 – x

X 2 – 2x

X 2 – 2x

Ответ: R = 3; частное: 2х 2 – х.

Основные методы решения уравнений высших степеней

1. Введение новой переменной

Метод введения новой переменной заключается в том, что для решения уравнения f(x) = 0 вводят новую переменную (подстановку) t = x n или t = g(х) и выражают f(x) через t, получая новое уравнение r(t). Решая затем уравнение r(t), находят корни: (t 1 , t 2 , …, t n). После этого получают совокупность n уравнений q(x) = t 1 , q(x) = t 2 , … , q(x) = t n , из которых находят корни исходного уравнения.

Пример; (х 2 + х + 1) 2 – 3х 2 — 3x – 1 = 0.

Решение: (х 2 + х + 1) 2 – 3х 2 — 3x – 1 = 0.

(х 2 + х + 1) 2 – 3(х 2 + x + 1) + 3 – 1 = 0.

Замена (х 2 + х + 1) = t.

t 2 – 3t + 2 = 0.

t 1 = 2, t 2 = 1. Обратная замена:

х 2 + х + 1 = 2 или х 2 + х + 1 = 1;

х 2 + х — 1 = 0 или х 2 + х = 0;

Из первого уравнения: х 1, 2 = (-1 ± √5)/2, из второго: 0 и -1.

Метод введения новой переменной находит применение при решении возвратных уравнений, то есть уравнений вида а 0 х n + а 1 х n – 1 + .. + а n – 1 х + а n =0, в котором коэффициенты членов уравнения, одинаково отстоящих от начала и конца, равны.

2. Разложение на множители методом группировки и формул сокращенного умножения

Основа данного метода заключается в группировке слагаемых таким образом, чтобы каждая группа содержала общий множитель. Для этого иногда приходится применять некоторые искусственные приемы.

Пример: х 4 — 3x 2 + 4х – 3 = 0.

Решение. Представим — 3x 2 = -2x 2 – x 2 и сгруппируем:

(х 4 — 2x 2) – (x 2 — 4х + 3) = 0.

(х 4 — 2x 2 +1 – 1) – (x 2 — 4х + 3 + 1 – 1) = 0.

(х 2 – 1) 2 – 1 – (x – 2) 2 + 1 = 0.

(х 2 – 1) 2 – (x – 2) 2 = 0.

(х 2 – 1 – х + 2)(х 2 – 1 + х — 2) = 0.

(х 2 – х + 1)(х 2 + х — 3) = 0.

х 2 – х + 1 = 0 или х 2 + х — 3 = 0.

В первом уравнении нет корней, из второго: х 1, 2 = (-1 ± √13)/2.

3. Разложение на множители методом неопределенных коэффициентов

Суть метода состоит в том, что исходный многочлен раскладывается на множители с неизвестными коэффициентами. Используя свойство, что многочлены равны, если равны их коэффициенты при одинаковых степенях, находят неизвестные коэффициенты разложения.

Пример: х 3 + 4x 2 + 5х + 2 = 0.

Решение. Многочлен 3-й степени можно разложить в произведение линейного и квадратного множителей.

х 3 + 4x 2 + 5х + 2 = (х — а)(x 2 + bх + c),

х 3 + 4x 2 + 5х + 2 = х 3 +bx 2 + cх — ax 2 — abх — ac,

х 3 + 4x 2 + 5х + 2 = х 3 + (b – a)x 2 + (c – ab)х – ac.

Решив систему:

получим

х 3 + 4x 2 + 5х + 2 = (х + 1)(x 2 + 3х + 2).

Корни уравнения (х + 1)(x 2 + 3х + 2) = 0 находятся легко.

Ответ: -1; -2.

4. Метод подбора корня по старшему и свободному коэффициенту

Метод опирается на применение теорем:

1) Всякий целый корень многочлена с целыми коэффициентами является делителем свободного члена.

2) Для того, чтобы несократимая дробь p/q (p – целое, q — натуральное) была корнем уравнения с целыми коэффициентами, необходимо, чтобы число p было целым делителем свободного члена а 0 , а q – натуральным делителем старшего коэффициента.

Пример: 6х 3 + 7x 2 — 9х + 2 = 0.

Решение:

2: p = ±1, ±2

6: q = 1, 2, 3, 6.

Следовательно, p/q = ±1, ±2, ±1/2, ±1/3, ±2/3, ±1/6.

Найдя один корень, например – 2, другие корни найдем, используя деление уголком, метод неопределенных коэффициентов или схему Горнера.

Ответ: -2; 1/2; 1/3.

5. Графический метод.

Данный метод состоит в построении графиков и использовании свойств функций.

Пример: х 5 + х – 2 = 0

Представим уравнение в виде х 5 = — х + 2. Функция у = х 5 является возрастающей, а функция у = — х + 2 — убывающей. Значит, уравнение х 5 + х – 2 = 0 имеет единственный корень -1.

6.Умножение уравнения на функцию.

Иногда решение алгебраического уравнения существенно облегчается, если умножить обе его части на некоторую функцию – многочлен от неизвестной. При этом надо помнить, что возможно появление лишних корней – корней многочлена, на который умножили уравнение. Поэтому надо либо умножать на многочлен, не имеющий корней, и получить равносильное уравнение, либо умножать на многочлен, имеющий корни, и тогда каждый из таких корней надо обязательно подставить в исходное уравнение и установить, является ли это число его корнем.

Пример. Решить уравнение:

X 8 – X 6 + X 4 – X 2 + 1 = 0. (1)

Решение: Умножив обе части уравнения на многочлен Х 2 + 1, не имеющий корней, получим уравнение:

(Х 2 +1) (Х 8 – Х 6 + Х 4 – Х 2 + 1) = 0 (2)
равносильное уравнению (1). Уравнение (2) можно записать в виде:

Х 10 + 1= 0 (3)
Ясно, что уравнение (3) не имеет действительных корней, поэтому уравнение (1) их не имеет.

Ответ: нет решений.

Кроме названных методов решения уравнений высших степеней существуют и другие. Например, выделение полного квадрата, схема Горнера, представление дроби в виде двух дробей. Из общих методов решения уравнений высших степеней, которые встречаются чаще всего, используют: метод разложения левой части уравнения на множители;

метод замены переменной (метод введения новой переменной); графический способ. С этими методами мы знакомим учащихся 9 класса при изучении темы «Целое уравнение и его корни». В учебнике Алгебра 9 (авторы Макарычев Ю.Н., Миндюк Н.Г и др) последних годов издания достаточно подробно рассматриваются основные методы решения уравнений высших степеней. Кроме этого в разделе «Для тех, кто хочет знать больше», на мой взгляд, доступно излагается материал о применении теорем о корне многочлена и целых корнях целого уравнения при решении уравнений высших степеней. Хорошо подготовленные ученики с интересом изучают этот материал, а затем представляют одноклассникам решённые уравнения.

Практически всё, что окружает нас, связано в той или иной мере с математикой. А достижения в физике, технике, информационных технологиях только подтверждают это. И что очень важно – решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама