THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Почки являются сложной структурой. Их структурной единицей является нефрон. Строение нефрона позволяет ему полноценно выполнять свои функции – в нем происходит фильтрация, процесс реабсорбции, экскреция и секреция биологически активных компонентов.

Формируется первичная, затем вторичная урина, которая выводится через мочевой пузырь. На протяжении дня через выводящий орган фильтруется большое количество плазмы. Ее часть в дальнейшем возвращается в организм, остальная — удаляется.

Строение и функции нефронов взаимосвязаны. Любое повреждение почек либо наименьших их единиц может привести к интоксикации и дальнейшему нарушению работы всего организма. Последствием нерационального применения некоторых препаратов, неправильного лечения или диагностики может стать почечная недостаточность. Первые проявления симптоматики — это причина для посещения специалиста. Данной проблемой занимаются урологи и нефрологи.


Нефрон является структурной и функциональной единицей почки. Есть активные клетки, которые непосредственно участвуют в продуцировании мочи (третья часть от всего количества), остальные находятся в резерве.

Резервные клетки становятся активными в экстренных случаях, например, при травмах, критических состояниях, когда резко теряется большой процент единиц почки. Физиология выделения предполагает частичную гибель клеток, поэтому резервные структуры способны в кратчайшие сроки активироваться для поддержания функций органа.

С каждым годом теряется до 1% структурных единиц — они гибнут навсегда и не восстанавливаются. При правильном образе жизни, отсутствии хронических заболеваний потеря начинается только после 40 лет. Учитывая, что количество нефронов в почке составляет примерно 1 миллион, процент кажется небольшим. К старости работа органа может значительно ухудшиться, что грозит нарушением функциональности мочевыделительной системы.

Процесс старения можно замедлить, изменив образ жизни и потребляя достаточное количество чистой питьевой воды. Даже в лучшем случае со временем остается только 60% активных нефронов в каждой почке. Эта цифра вовсе не критична, так как фильтрация плазмы нарушается только с потерей более 75% клеток (как активных, так и тех, что в резерве).


Некоторые люди живут, потеряв одну почку, — тогда все функции выполняет вторая. Работа мочевыделительной системы значительно нарушается, поэтому необходимо вовремя проводить профилактику и лечение заболеваний. В таком случае нужно регулярное посещение врача для назначения поддерживающей терапии.

Анатомия нефрона

Анатомия и строение нефрона довольно сложные — каждый элемент играет определенную роль. В случае нарушения в работе даже наименьшего составляющего почки перестают нормально функционировать.

  • капсула;
  • клубочковая структура;
  • канальцевая структура;
  • петли Генле;
  • собирательные трубочки.

Нефрон в почке состоит из сообщенных друг с другом сегментов. Капсула Шумлянского-Боумена, клубок мелких сосудов — это составляющие почечного тела, где проходит процесс фильтрации. Далее идут канальцы, где обратно всасываются и продуцируются вещества.


Из тельца почки начинается проксимальный участок; дальше выходят петельки, уходящие в дистальный отдел. Нефроны в развернутом виде по отдельности имеют длину около 40 мм, а если их сложить, получается примерно 100000 м.

Капсулы нефронов находятся в корковом веществе, включаются в мозговое, затем еще раз в корковое, а в конце — в собирательные структуры, которые выходят в лоханку почки, где начинаются мочеточники. По ним удаляется вторичная урина.

Капсула

Нефрон начинается из мальпигиева тела. Оно состоит из капсулы и клубка капилляров. Клетки вокруг мелких капилляров располагаются в форме шапочки — это почечное тельце, которое пропускает задержавшуюся плазму. Подоциты покрывают стенку капсулы изнутри, которая вместе с наружной формирует щелевидную полость диаметром в 100 нм.


Фенестрированные (окончатые) капилляры (составляющие клубочка) снабжаются кровью от афферентных артерий. По-другому их называют «волшебной сеткой», потому что они не играют никакой роли в газообмене. Кровь, проходящая по этой сетке, не меняет свой газовый состав. Плазма и растворившиеся вещества под воздействием кровяного давления попадают в капсулу.

Капсула нефрона накапливает инфильтрат, содержащий вредные продукты очистки плазмы крови — так формируется первичная моча. Щелевидный промежуток между слоями эпителия выполняет функцию фильтра, работающего под давлением.

Благодаря приводящим и выносящим клубочковым артериолам давление меняется. Базальная мембрана играет роль дополнительного фильтра — задерживает некоторые элементы крови. Диаметр молекул белков больше, чем поры мембраны, поэтому они не проходят.

Непрофильтрованная кровь попадает в эфферентные артериолы, переходящие в сетку из капилляров, обволакивающую канальцы. В дальнейшем в кровь поступают вещества, которые реабсорбируются в этих канальцах.


Капсула нефрона почки человека сообщается с канальцем. Следующий отдел называется проксимальным, туда далее переходит первичная урина.

Извитые канальцы

Проксимальные канальцы бывают прямыми и изогнутыми. Поверхность внутри выстилается эпителием цилиндрического и кубического типа. Щеточная кайма с ворсинками представляет собой поглощающий слой канальцев нефронов. Выборочный захват обеспечивается большой площадью проксимальных канальцев, близкой дислокацией перитубулярных сосудов и большим количеством митохондрий.

Жидкость циркулирует между клетками. Компоненты плазмы в виде биологических веществ фильтруются. В извитых канальцах нефрона вырабатываются эритропоэтин и кальцитриол. Вредные включения, попадающие в фильтрат с помощью обратного осмоса, выводятся с уриной.

Сегменты нефрона фильтруют креатинин. Количество этого белка в крови — важный показатель функциональной деятельности почек.

Петли Генле

Петля Генле захватывает часть проксимального и отрезок дистального отдела. Сначала диаметр петли не меняется, затем она сужается и пропускает ионы Na наружу, во внеклеточное пространство. За счет создания осмоса происходит всасывание H2O под давлением.

Нисходящий и восходящий протоки — это составляющие петли. Нисходящий участок диаметром 15 мкм состоит из эпителия, где расположены множественные пиноцитозные пузыри. Восходящий участок выстлан кубическим эпителием.

Петли распределены между корковой и мозговой субстанцией. В этой области вода перемещается в нисходящую часть, затем возвращается.


В начале дистальный канал прикасается к капиллярной сети в месте приводящего и выводящего сосуда. Он достаточно узкий и выстилается гладким эпителием, а снаружи — гладкая базальная мембрана. Здесь выделяется аммиак и гидроген.

Собирательные трубочки

Собирательные трубки по-другому называются «беллиниевы протоки». Их внутренняя выстилка — это светлые и темные клетки эпителия. Первые реабсорбируют воду и принимают непосредственное участие в выработке простагландинов. Хлористоводородная кислота продуцируется в темных клетках складчатого эпителия, имеет свойство изменять pH урины.

Собирательные трубочки и собирательные протоки не принадлежат к структуре нефрона, так как располагаются немного ниже, в почечной паренхиме. В этих структурных элементах происходит пассивное обратное всасывание воды. В зависимости от функциональности почек, в организме регулируется количество воды и ионов натрия, что, в свою очередь, сказывается на кровяном давлении.

Структурные элементы подразделяют в зависимости от особенностей строения и функций.


  • корковый;
  • юкстамедуллярный.

Корковые делятся на два типа — интракортикальные и суперфициальные. Количество последних — примерно 1% от всех единиц.

Особенности суперфициальных нефронов:

  • малый объем фильтрации;
  • расположение клубочков на поверхности коры;
  • самая короткая петля.

Почки в основном состоят из нефронов интракортикального типа, которых более 80%. Они находятся в корковом слое и выполняют главную роль в фильтрации первичной урины. По причине большей ширины выводящей артериолы в клубочки интракортикальных нефронов кровь поступает под давлением.


Корковые элементы регулируют количество плазмы. При недостатке воды она обратно захватывается из юкстамедуллярных нефронов, размещенных в большем количестве в мозговом веществе. Они отличаются крупными почечными тельцами с относительно длинными канальцами.

Юкстамедуллярные составляют более 15% всех нефронов органа и формируют окончательное количество урины, определяя ее концентрацию. Их особенность строения — длинные петли Генле. Выносящие и приводящие сосуды одинаковой длины. Из выносящих образуются петли, проникающие в мозговое вещество параллельно с Генле. Далее они входят в венозную сетку.

Функции

В зависимости от типа, нефроны почек выполняют следующие функции:

  • фильтрация;
  • обратное всасывание;
  • секреция.

Первая стадия характеризуется выработкой первичной мочевины, которая далее очищается при реабсорбции. На этом же этапе всасываются полезные вещества, микро- и макроэлементы, вода. Последняя стадия формирования урины представлена канальцевой секрецией — образуется вторичная моча. С ней выводятся вещества, которые не нужны организму.
Структурно-функциональной единицей почки являются нефроны, которые:

  • поддерживают водно-солевой и электролитный баланс;
  • регулируют насыщенность мочи биологически активными компонентами;
  • поддерживают кислотно-щелочной баланс (pH);
  • контролируют давление крови;
  • выводят продукты метаболизма и другие вредные вещества;
  • участвуют в процессе глюконеогенеза (получение глюкозы из соединений неуглеводного типа);
  • провоцируют секрецию некоторых гормонов (например, регулирующих тонус стенок сосудов).

Процессы, происходящие в нефроне человека, позволяют оценить состояние органов выделительной системы. Это можно сделать двумя способами. Первый — вычисление содержания креатинина (продукта распада белка) в крови. Данный показатель характеризует, насколько единицы почек справляются с функцией фильтрации.

Работа нефрона также может быть оценена с помощью второго показателя — скорости клубочковой фильтрации. Плазма крови и первичная моча в норме должны фильтроваться со скоростью 80-120 мл/мин. Для людей в возрасте нормой может быть нижняя граница, поскольку после 40 лет клетки почек погибают (клубочков становится значительно меньше, и органу сложнее полноценно проводить фильтрацию жидкостей).

Функции некоторых составляющих клубочкового фильтра

Клубочковый фильтр состоит из фенестрированного эндотелия капилляра, базальной мембраны и подоцитов. Между этими структурами располагается мезангиальный матрикс. Первый слой выполняет функцию грубой фильтрации, второй — отсеивает белки, а третий очищает плазму от мелких молекул ненужных веществ. Мембрана имеет отрицательный заряд, поэтому через нее не проникают альбумины.


Фильтруется плазма крови в клубочках, а поддерживают их работу мезангиоциты — клетки мезангиального матрикса. Эти структуры выполняют сократительную и регенеративную функцию. Мезангиоциты восстанавливают базальную мембрану и подоциты, а также, подобно макрофагам, они поглощают отмершие клетки.

Если каждая единица делает свою работу, почки функционируют, как слаженный механизм, а образование мочи проходит без возврата в организм отравляющих веществ. Это и предотвращает накопление токсинов, появление отечности, повышенного давления и другой симптоматики.

Нарушения функций нефрона и их профилактика

В случае нарушения работы функциональных и структурных единиц почек происходят изменения, отражающиеся на работе всех органов — нарушается водно-солевое равновесие, кислотность и обмен веществ. Перестает нормально функционировать ЖКТ, из-за интоксикации могут проявляться аллергические реакции. Также повышается нагрузка на печень, так как этот орган напрямую связан с выведением токсинов.

Для заболеваний, связанных с транспортной дисфункцией канальцев, существует единое название – тубулопатии. Они бывают двух видов:

  • первичные;
  • вторичные.

Первый тип — это врожденные патологии, второй — приобретенная дисфункция.

Активная гибель нефронов начинается при приеме лекарств, в побочных эффектах которых указаны возможные заболевания почек. Нефротоксическое действие имеют некоторые препараты из следующих групп: нестероидные противовоспалительные средства, антибиотики, иммуносупрессоры, противоопухолевые и др.

Тубулопатии подразделяются на несколько видов (по месту расположения):

  • проксимальные;
  • дистальные.

При полной или частичной дисфункции проксимальных канальцев может наблюдаться фосфатурия, почечный ацидоз, гипераминоацидурия и глюкозурия. Нарушенная реабсорбция фосфатов приводит к разрушению костной ткани, которая не восстанавливается при терапии с применением витамина D. Гиперацидурия характеризуется нарушением транспортной функции аминокислот, что приводит к различным заболеваниям (зависит от типа аминокислоты).
Подобные состояния требуют незамедлительной помощи медиков, так же как и дистальные тубулопатии:

  • почечный водный диабет;
  • канальцевый ацидоз;
  • псевдогипоальдостеронизм.

Нарушения бывают комбинированными. При развитии сложных патологий может одновременно уменьшаться всасывание аминокислот с глюкозой и реабсорбция бикарбонатов с фосфатами. Соответственно, проявляются следующие симптомы: ацидоз, остеопороз и другие патологии костной ткани.

Предотвращают появление дисфункции почек правильный режим питания, употребление достаточного количества чистой воды и активный образ жизни. Необходимо вовремя обращаться к специалисту в случае возникновения симптомов нарушения работы почек (для профилактики перехода острой формы заболевания в хроническую).

Нефрон – функциональная почечная единица, где происходит образование мочи. В состав нефрона входят:

1) почечное тельце (двустенная капсула клубочка, внутри нее находится клубочек капилляров);

2) проксимальный извиты каналец (внутри него находится большое количество ворсинок);

3) петля Генли (нисходящая и восходящая части), нисходящая часть тонкая, опускается глубоко в мозговое вещество, где каналец изгибается на 180 и идет в корковое вещество почки, образуя восходящую часть петли нефрона. Восходящая часть включает тонкую и толстую части. Она поднимается до уровня клубочка своего же нефрона, где переходит в следующий отдел;

4) дистальный извитый каналец. Этот отдел канальца соприкасается с клубочком между приносящей и выносящей артериолами;

5) конечный отдел нефрона (короткий связывающий каналец, впадает в собирательную трубку);

6) собирательная трубка (проходит через мозговое вещество и открывается в полость почечной лоханки).

Различают следующие сегменты нефрона:

1) проксимальный (извитая часть проксимального канальца);

2) тонкий (нисходящая и тонкая восходящая части петли Генли);

3) дистальный (толстый восходящий отдел, дистальный извитый каналец и связывающий каналец).

В почке различают несколько типов нефронов :

1) поверхностные;

2) интракортикальные;

3) юкстамедуллярные.

Различия между ними заключаются в их локализации в почке.

Большое функциональное значение имеет зона почки, в которой расположен каналец. В корковом веществе находятся почечные клубочки, проксимальный и дистальные отделы канальцев, связывающие отделы. В наружной полоске мозгового вещества находятся нисходящие и толстые восходящие отделы петель нефрона, собирательные трубки. Во внутреннем мозговом веществе располагаются тонкие отделы петель нефронов и собирательные трубки. Расположение каждой из частей нефрона в почке определяет их участие в деятельности почки, в процессе мочеобразования.

Процесс мочеобразования состоит из трех звеньев:

1) клубочковой фильтрации, ультрафильтрации безбелковой жидкости из плазмы крови в капсулу почечного клубочка, в результате чего образуется первичная моча;

2) канальцевой реабсорбции – процесса обратного всасывания профильтровавшихся веществ и воды из первичной мочи;

3) секреции клетки. Клетки некоторых отделов канальца переносят из неклеточной жидкости в просвет нефрона (секретируют) ряд органических и неорганических веществ, выделяют в просвет канальца молекулы, синтезированные в клетке канальца.

Скорость процесса мочеобразования зависит от общего состояния организма, присутствия гормонов, эфферентных нервов или локально образующихся биологически активных веществ (тканевых гормонов).

Канальцевую часть нефрона принято делить на четыре отдела:

1) главный (проксимальный);

2) тонкий сегмент петли Генле;

3) дистальный;

4) собирательные трубки .

Главный (проксимальный) отдел состоит из извилистой и прямой частей. Клетки извитой части имеют более сложное строение, чем клетки других отделов нефрона. Это высокие (до 8 мкм) клетки со щеточной каемкой, внутриклеточными мембранами, большим числом правильно ориентированных митохондрий, хорошо развитыми пластинчатым комплексом и эндоплазматической сетью, лизосомами и другими ультраструктурами (рис. 1). В их цитоплазме много аминокислот, основных и кислых белков, полисахаридов и активных SH-групп, высокоактивных дегидрогеназ, диафораз, гидролаз [Серов В. В., Уфимцева А. Г., 1977; Jakobsen N., Jorgensen F. 1975].

Рис. 1. Схема ультраструктуры клеток канальцев различных отделов нефрона . 1 - клетка извитой части главного отдела; 2 - клетка прямой части главного отдела; 3 - клетка тонкого сегмента петли Генле; 4 - клетка прямой (восходящей) части дистального отдела; 5 - клетка извитой части дистального отдела; 6 - "темная" клетка связующего отдела и собирательной трубки; 7 - «светлая» клетка связующего отдела и собирательной трубки.

Клетки прямой (нисходящей) части главного отдела в основном имеют то же строение, что и клетки извитой части, но пальцевидные выросты щеточной каемки более грубые и короткие, внутриклеточных мембран и митохондрий меньше, они не так строго ориентированы, значительно меньше цитоплазматических гранул.

Щеточная каемка состоит из многочисленных пальцевидных выростов цитоплазмы, покрытых клеточной мембраной и гликокаликсом. Их число на поверхности клетки достигает 6500, что увеличивает рабочую площадь каждой клетки в 40 раз . Эти сведения дают представление о поверхности, на которой совершается обмен в проксимальном отделе канальцев. В щеточной каемке доказана активность щелочной фосфатазы, АТФ-азы, 5-нуклеотидазы, аминопептидазы и ряда других ферментов . Мембрана щеточной каемки содержит натрийзависимую транспортную систему. Считают, что гликокаликс, покрывающий микроворсинки щеточной каемки, проницаем для малых молекул. Большие молекулы поступают в каналец с помощью пиноцитоза, который осуществляется благодаря кратерообразным углублениям в щеточной каемке .

Внутриклеточные мембраны образованы не только изгибами БМ клетки, но и латеральными мембранами соседних клеток, которые как бы перекрывают друг друга. Внутриклеточные мембраны являются по существу и межклеточными, что служит активному транспорту жидкости. При этом главное значение в транспорте придается базальному лабиринту, образованному выпячиваниями БМ внутрь клетки; он рассматривается как «единое диффузионное пространство» .

Многочисленные митохондрии расположены в базальной части между внутриклеточными мембранами, что и создает впечатление их правильной ориентации. Каждая митохондрия, таким образом, заключена в камере, образованной складками внутри- и межклеточных мембран. Это позволяет продуктам энзиматических процессов, развивающихся в митохондриях, легко выходить за пределы клетки. Энергия, вырабатываемая в митохондриях, служит как транспорту вещества, так и секреции, осуществляемой с помощью гранулярной эндоплазматической сети и пластинчатого комплекса, который претерпевает циклические изменения в различные фазы диуреза.

Ультраструктура и ферментохимия клеток канальцев главного отдела объясняют его сложную и дифференцированную функцию. Щеточная каемка, как и лабиринт внутриклеточных мембран, является своеобразным приспособлением для колоссальной по объему функции реабсорбции, выполняемой этими клетками. Ферментная транспортная система щеточной каемки, зависимая от натрия, обеспечивает реабсорбцию глюкозы, аминокислот, фосфатов [Наточин Ю. В., 1974; Kinne R., 1976]. С внутриклеточными мембранами, особенно с базальным лабиринтом, связывают реабсорбцию воды, глюкозы, аминокислот, фосфатов и ряда других веществ , которую выполняет натрийнезависимая транспортная система мембран лабиринта.

Особый интерес представляет вопрос о канальцевой реабсорбции белка. Считают доказанным, что весь фильтрирующийся в клубочках белок реабсорбируется в проксимальном отделе канальцев, чем объясняется его отсутствие в моче здорового человека. Это положение основывается на многих исследованиях, выполненных, в частности, с помощью электронного микроскопа. Так, транспорт белка в клетке проксимального канальца изучен в опытах с микроинъекцией меченного ¹³¹I альбумина непосредственно в каналец крысы с последующей электронно-микроскопической радиографией этого канальца .

Альбумин находят прежде всего в инвагинатах мембраны щеточной каемки, затем в пиноцитозных пузырьках, которые сливаются в вакуоли. Белок с вакуолей появляется затем в лизосомах и пластинчатом комплексе (рис. 2) и расщепляется гидролитическими ферментами . Вероятнее всего, «основные усилия» высокой дегидрогеназной, диафоразной и гидролазной активности в проксимальном отделе канальцев направлены на реабсорбцию белка.

Рис. 2. Схема реабсорбции белка клеткой канальцев главного отдела .

I - микропиноцитоз у основания щеточной каемки; Mvb -вакуоли, содержащие белок ферритин;

II - заполненные ферритином вакуоли (а) перемещаются к базальной части клетки; б - лизосома; в - слияние лизосомы с вакуолью; г - лизосомы с инкорпорированным белком; АГ - пластинчатый комплекс с цистернами, содержащими КФ (окрашены в черный цвет);

III - выделение через БМ низкомолекулярных фрагментов реабсорбированного белка, образовавшихся после «переваривания» в лизосомах (показано двойными стрелками).

В связи с этими данными становятся понятными механизмы "повреждения" канальцев главного отдела. При НС любого генеза, протеинурических состояниях изменения эпителия канальцев проксимального отдела в виде белковой дистрофии (гиалиново-капельной, вакуольной) отражают резорбционную недостаточность канальцев в условиях повышенной порозности гломерулярного фильтра для белка [Давыдовский И. В., 1958; Серов В. В., 1968]. Нет необходимости видеть в изменениях канальцев при НС первично-дистрофические процессы.

В равной мере нельзя рассматривать и протеинурию как результат только повышенной порозности гломерулярного фильтра. Протеинурия при нефрозах отражает как первичное повреждение фильтра почки, так и вторичное истощение (блокаду) ферментных систем канальцев, осуществляющих реабсорбцию белка.

При ряде инфекций и интоксикаций блокада ферментных систем клеток канальцев главного отдела может наступить остро, поскольку эти канальцы первыми подвергаются действию токсинов и ядов при их элиминации почками. Активация гидролаз лизосомного аппарата клетки завершает в ряде случаев дистрофический процесс развитием некроза клетки (острый нефроз). В свете приведенных данных становится понятной патология «выпадения» ферментов канальцев почек наследственного порядка (так называемые наследственные канальцевые ферментопатии). Определенная роль в повреждении канальцев (тубулолизис) отводится антителам, реагирующим с антигеном тубулярной базальной мембраны и щеточной каемки.

Клетки тонкого сегмента петли Генле характеризуются той особенностью, что внутриклеточные мембраны и пластинки пересекают тело клетки на всю ее высоту, образуя в цитоплазме щели шириной до 7 нм . Создается впечатление, что цитоплазма состоит из отдельных сегментов, причем часть сегментов одной клетки как бы вклинивается между сегментами соседней клетки. Ферментохимия тонкого сегмента отражает функциональную особенность этого отдела нефрона, который как дополнительное приспособление уменьшает до минимума фильтрационный заряд воды и обеспечивает ее «пассивную» резорбцию [Уфимцева А. Г., 1963].

Соподчиненная работа тонкого сегмента петли Генле, канальцев прямой части дистального отдела, собирательных трубок и прямых сосудов пирамид обеспечивает осмотическое концентрирование мочи на основе противоточного умножителя . Новые представления о пространственной организации противоточно-множительной системы (рис. 3) убеждают в том, что концентрирующая деятельность почки обеспечивается не только структурно-функциональной специализацией различных отделов нефрона, но и высокоспециализированным взаиморасположением канальцевых структур и сосудов почки [Перов Ю. Л., 1975; Kriz W., Lever А., 1969].

Рис. 3. Схема расположения структур противоточно-множительной системы в мозговой веществе почки . 1 - артериальный прямой сосуд; 2 - венозный прямой сосуд; 3 - тонкий сегмент петли Генле; 4 - прямая часть дистального отдела; СТ - собирательные трубки; К - капилляры.

Дистальный отдел канальцев состоит из прямой (восходящей) и извитой частей. Клетки дистального отдела ультраструктурно напоминают клетки проксимального отдела. Они богаты сигарообразными митохондриями, заполняющими пространства между внутриклеточными мембранами, а также цитоплазматическими вакуолями и гранулами вокруг ядра, расположенного апикально, но лишены щеточной каемки. Эпителий дистального отдела богат аминокислотами, основными и кислыми белками, РНК, полисахаридами и реактивными SH-группами; для него характерна высокая активность гидролитических, гликолитических ферментов и ферментов цикла Кребса.

Сложность устройства клеток дистальных канальцев, обилие митохондрий, внутриклеточных мембран и пластического материала, высокая ферментативная активность свидетельствуют о сложности их функции - факультативной реабсорбции, направленной на поддержание постоянства физико-химических условий внутренней среды. Факультативная реабсорбция регулируется в основном гормонами задней доли гипофиза, надпочечников и ЮГА почки.

Местом приложения действия антидиуретического гормона гипофиза (АДГ), в почке, «гистохимическим плацдармом» этой регуляции служит система гиалуроновая кислота - гиалуронидаза, заложенная в пирамидах, главным образом в их сосочках. Альдостерон, по некоторым данным, и кортизон влияют на уровень дистальной реабсорбции прямым включением в ферментную систему клетки, обеспечивающую перенос ионов натрия из просвета канальца в интерстиции почки. Особое значение в этом процессе принадлежит эпителию прямой части дистального отдела, причем дистальный эффект действия альдостерона опосредован секрецией ренина, закрепленной за клетками ЮГА. Ангиотензин, образующийся под действием ренина, не только стимулирует секрецию альдостерона, но и участвует в дистальной реабсорбции натрия.

В извитой части дистального отдела канальца, там, где он подходит к полюсу сосудистого клубочка, различают macula densa . Эпителиальные клетки в этой части становятся цилиндрическими, их ядра - гиперхромными; они располагаются полисадообразно, причем непрерывной базальной мембраны здесь нет. Клетки macula densa имеют тесные контакты с гранулированными эпителиоидными клетками и lacis-клетками ЮГА, что обеспечивает влияние химического состава мочи дистального канальца на гломерулярный кровоток и, наоборот гормональные влияния ЮГА на macula densa.

Со структурно-функциональной особенностью канальцев дистального отдела, их повышенной чувствительностью к кислородному голоданию связано до некоторой степени их избирательное поражение при острых гемодинамических повреждениях почек, в патогенезе которых основную роль играют глубокие нарушения почечного кровообращения с развитием аноксии тубулярного аппарата. В условиях острой аноксии клетки дистальных канальцев подвергаются воздействию содержащей токсические продукты кислой мочи, что ведет к их поражению вплоть до некроза. При хронической аноксии клетки дистального канальца чаще, чем проксимального, подвергаются атрофии.

Собирательные трубки , выстланные кубическим, а в дистальных отделах цилиндрическим эпителием (светлые и темные клетки) с хорошо развитым базальным лабиринтом, высокопроникаемы для воды. С темными клетками связывают секрецию ионов водорода, в них обнаружена высокая активность карбоангидразы [Зуфаров К. А. и др., 1974]. Пассивный транспорт воды в собирательных трубках обеспечивается особенностями и функции противоточно-множительной системы .

Заканчивая описание гистофизиологии нефрона, следует остановиться на его структурно-функциональном различии в разных отделах почки. На этом основании выделяют кортикальные и юкстамедуллярные нефроны, различающиеся строением клубочков и канальцев, а также своеобразием функции; различно и кровоснабжение этих нефронов.

Клиническая нефрология

под ред. Е.М. Тареева

Нефроном является структурная единица почки, отвечающая за формирование урины. Работая 24 часа, органы пропускают до 1700 л плазмы, образуя немногим больше литра урины.

Нефрон

От работы нефрона, которым является структурно-функциональная единица почки, зависит, насколько успешно осуществляется поддержание баланса, выводятся отработанные продукты. За сутки два миллионов нефронов почек, столько, сколько их в организме, вырабатывают 170 л первичной мочи, сгущают до суточного количества, доходящего до полутора литров. Суммарная площадь выделительной поверхности нефронов составляет почти 8 м 2 , что в 3 раза превышает площадь кожи.

У выделительной системы высокий резерв прочности. Создается он благодаря тому, что одновременно работает лишь третья часть нефронов, что позволяет выжить при удалении почки.

Очищается в почках артериальная кровь, идущая по приносящей артериоле. Выходит очищенная кровь по выходящей артериоле. Поперечник приносящей артериолы больше, чем у артериолы, за счет чего создается перепад давления.

Строение

Отделы нефрона почки такие:

  • Начинаются в корковом слое почки капсулой Боумена, которая располагается над клубочком капилляров артериолы.
  • Капсула нефрона почки сообщается с проксимальным (ближайшим) канальцем, направляемым в мозговое вещество — это и является ответом на вопрос в какой части почки находятся капсулы нефронов.
  • Каналец переходит в петлю Генле – сначала в проксимальный отрезок, затем – дистальный.
  • Окончанием нефрона принято считать место, где начинается собирательная трубочка, куда поступает вторичная моча из множества нефронов.

Схема нефрона

Капсула

Клетки подоциты, окружают клубочек капилляров подобием шапочки. Образование называют почечным тельцем. В его поры проникает жидкость, которая оказывается в пространстве Боумена. Здесь собирается инфильтрат – продукт фильтрации кровяной плазмы.

Проксимальный каналец

Этот вид состоит из клеток, покрытых снаружи базальной мембраной. Внутренняя часть эпителия снабжена выростами – микроворсинками, как щеточка, выстилающими каналец по всей длине.

Снаружи находится базальная мембрана, собранная в многочисленные складки, которые при наполнении канальцев распрямляются. Каналец при этом приобретает округлую форму в поперечнике, а эпителий уплощается. При отсутствии жидкости поперечник канальца становится узким, клетки приобретают призматический вид.

К функциям относится реабсорбция:

  • H 2 O;
  • Na – 85%;
  • ионов Ca, Mg, K, Cl;
  • солей — фосфатов, сульфатов, бикарбоната;
  • соединений — белков, креатинина, витаминов, глюкозы.

Из канальца реабсорбенты попадают в кровеносные сосуды, которые густой сетью оплетают каналец. На этом участке в полость канальца всасывается желчная кислота, поглощаются щавелевая, парааминогиппуровая, мочевая кислоты, происходит всасывание адреналина, ацетилхолина, тиамина, гистамина, транспортируются лекарственные средства – пенициллина, фуросемида, атропина и др.

Петля Генле

После вхождения в мозговой луч проксимальный каналец переходит в начальный отдел петли Генле. Каналец переходит в нисходящий отрезок петли, которая спускается в мозговое вещество. Затем восходящая часть поднимается в корковое вещество, сближаясь с капсулой Боумена.

Внутреннее устройство петли сначала не отличается от строения проксимального канальца. Затем просвет петли сужается, через него проходит фильтрация Na в межтканевую жидкость, которая становится гипертонической. Это имеет значение для работы собирательных трубочек: благодаря высокой концентрации соли в омывающей жидкости, в них происходит всасывание воды. Восходящий отдел расширяется, переходит в дистальный каналец.

Петля Гентле

Дистальный каналец

Этот участок уже, короче, состоит из низких эпителиальных клеток. Ворсинки внутри канала отсутствуют, с наружной стороны хорошо выражена складчатость базальной мембраны. Здесь идет реабсорбция натрия, продолжается реабсорбция воды, секреция в просвет канальца ионов водорода, аммиака.

На видео схема строения почки и нефрона:

Виды нефронов

По особенностям строения, функциональному назначению различают такие типы нефронов, которые функционируют в почке:

  • корковые — суперфициальные, интракортикальные;
  • юкстамедуллярные.

Корковые

В корковом слое находятся две разновидности нефронов. Суперфициальные составляют около 1% от общего числа нефронов. Отличаются поверхностным расположением клубочков в коре, самой короткую петлей Генле, небольшим объемом фильтрации.

Количество интракортикальных — более 80% нефронов почки, располагаются в середине коркового слоя, играют основную роль в фильтрации урины. Кровь в клубочке интракортикального нефрона проходит под давлением, так как приводящая артериола значительно шире выводящей.

Юкстамедуллярные

Юкстамедуллярные — малочисленная часть нефронов почки. Их число не превышает 20% от числа нефронов. Капсула находится на границе коркового и мозгового слоя, остальная его часть расположена в мозговом слое, петля Генле спускается почти к самой почечной лоханке.

Этот вид нефронов имеет определяющее значение в способности концентрировать мочу. У особенности юкстамедуллярного нефрона относится то, что выводящая артериола этого вида нефрона имеет тот же диаметр, что и приносящая, а петля Генле самая длинная из всех.

Выносящие артериолы образуют петли, которые движутся в мозговой слой параллельно петле Генле, впадают в венозную сеть.

Функции

В функции нефрона почки входит:

  • концентрирование урины;
  • регуляция тонуса сосудов;
  • контроль над давлением крови.

Моча образуется в несколько этапов:

  • в клубочках фильтруется плазма крови, поступающая по артериоле, образуется первичная моча;
  • реабсорбция из фильтрата полезных веществ;
  • концентрация мочи.

Корковые нефроны

Основная функция — образование урины, реабсорбция полезных соединений, белков, аминокислот, глюкозы, гормонов, минералов. Корковые нефроны участвуют в процессах фильтрации, реабсорбции за счет особенностей кровоснабжения, а реабсорбированные соединения сразу проникают в кровь через близко расположенную капиллярную сеть выносящей артериолы.

Юкстамедуллярные нефроны

Основная работа юкстамедуллярного нефрона заключается в концентрировании мочи, что возможно, благодаря особенностям движения крови в выходящей артериоле. Артериола не переходит в капиллярную сеть, а переходит в венулы, впадающие в вены.

Нефроны этого вида участвуют в формировании структурного образования, регулирующего кровяное давление. Этот комплекс секретирует ренин, необходимый для выработки ангиотензина 2 – сосудосуживающего соединения.

Нарушение функций нефрона и как восстановить

Нарушение работы нефрона приводит к изменениям, которые отражаются на всех системах организма.

К расстройствам, вызванным дисфункцией нефронов, относятся нарушения:

  • кислотности;
  • водно-солевого баланса;
  • обмена веществ.

Заболевания, которые вызываются нарушением транспортных функций нефронов, называются тубулопатиями, среди которых различают:

  • первичные тубулопатии – врожденные дисфункции;
  • вторичные – приобретенные нарушения транспортной функции.

Причинами появления вторичной тубулопатии служит повреждение нефрона, вызванное действием токсинов, в том числе лекарств, злокачественных опухолей, тяжелых металлов, миеломы.

По месту локализации тубулопатии:

  • проксимальные – повреждение проксимальных канальцев;
  • дистальные – повреждение функций дистальных извитых канальцев.

Виды тубулопатии

Проксимальная тубулопатия

Повреждение проксимальных участков нефрона приводит к формированию:

  • фосфатурии;
  • гипераминоацидурии;
  • почечного ацидоза;
  • глюкозурии.

Нарушение реабсорбции фосфатов приводит к развитию рахитоподобного строения костей – состояния, устойчивого к лечению витамином D. Патологию связывают с отсутствием белка-переносчика фосфата, нехваткой рецепторов, связывающих кальцитриол.

Связана со снижением способности всасывать глюкозу. Гипераминоацидурия – это явления, при котором нарушается транспортная функция аминокислот в канальцах. В зависимости от вида аминокислоты, патология приводит к различным системным заболеваниям.

Так, если нарушена реабсорбция цистина, развивается заболевание цистинурия – аутосомно-рецессивное заболевание. Болезнь проявляется отставанием в развитии, почечной коликой. В моче при цистинурии возможно появление цистиновых камней, которые легко растворяются в щелочной среде.

Проксимальный канальцевый ацидоз вызывается неспособностью поглощать бикарбонат, из-за чего он выделяется с мочой, а в крови его концентрация понижается, а ионов Cl, напротив, повышается. Это приводит к метаболическому ацидозу, при этом происходит усиление выведения ионов K.

Дистальная тубулопатия

Патологии дистальных отделов проявляются почечным водным диабетом, псевдогипоальдостеронизмом, канальцевым ацидозом. Почечный диабет — повреждение наследственное. Врожденное нарушение вызвано отсутствием реакции клеток дистальных канальцев на антидиуретический гормон. Отсутствие реакции приводит к нарушению способности к концентрации урины. У больного развивается полиурия, в день может выделяться до 30 л мочи.

При комбинированных нарушениях развиваются сложные патологии, одна из которых называется . При этом нарушена реабсорбция фосфатов, бикарбонатов, не всасываются аминокислоты, глюкоза. Синдром проявляется задержкой развития, остеопорозом, патологией строения костей, ацидозом.

Нефрон — структурная и функциональная единица почки. У человека в каждой почке содержится около миллиона нефронов, каждый длиной около 3 см.

Почечное тельце и система канальцев, длина которых в каждом нефроне 50 — 55 мм, а всех нефронов — около 100 км. В каждой почке более 1 млн нефронов, которые функционально связаны с кровеносными сосудами. Мальпигиево тельце образовано сосудистым клубочком, окруженным капсулой клубочка.

В течение суток в просвет капсул фильтруется около 100 л первичной мочи. Ее путь таков: кровь- эндотелий капилляров- базальная мембрана, лежащая между эндотелиальными клетками и отростками подоцитов-щели между подоцитами — полость капсулы. Из полости капсулы поступает в проксимальный отдел канальца нефрона. Около 85% натрия и воды, а также белок, глюкоза, аминокислоты, кальций, фосфор из первичной мочи всасываются именно в проксимальных отделах. Проксимальный отдел переходит в тонкую нисходящую часть петли Генле (около 15 мкм в диаметре). выстилающие ее плоские клетки всасывается вода; восходящая часть — толстая (диаметр около 30 мкм), в ней происходит дальнейшая потеря натрия и накопление воды. В коротком дисталъном отделе происходит дальнейшее выделение натрия в тканевую жидкость и всасывание большого количества воды. Процесс всасывания воды продолжается и в собирательных трубочках. Всасывание воды в дистальной части и собирательных трубочках регулируется АДГ (антидиуретическим гормоном) задней доли гипофиза.

В результате этого количество окончательной мочи по сравнению с количеством первичной резко уменьшается (от 100 л до 1,5 л в сутки), в то же время возрастает концентрация веществ, не подвергающихся обратному всасыванию. Корковое вещество составляют почечные тельца и дистальные отделы нефронов. Мозговые лучи и мозговое вещество образованы прямыми канальцами, мозговые лучи — нисходящими и восходящими отделами петель корковых нефронов и начальными отделами собирательных трубочек; а мозговое вещество почки -нисходящими и восходящими отделами и коленами петель нефронов, конечными отделами собирательных трубочек и сосочковыми протоками.

Каждый нефрон включает шесть отделов, сильно различающихся по строению и физиологическим функциям: почечное тельце (мальпигиево тельце), состоящее из боуменовой капсулы и почечного клубочка; проксимальный извитой почечный каналец; нисходящее колено петли Генле; восходящее колено петли Генле; дистальный извитой почечный каналец; собирательная почечная трубка.

Существуют нефроны двух типов — и юкстамедуллярные нефроны.

Кровь поступает в почку по почечной артерии, которая разветвляется сначала на междолевые артерии, затем на дуговые артерии и междольковые артерии, от последних отходят приносящие артериолы, снабжающие кровью клубочки. Из клубочков кровь, объем которой уменьшился, оттекает по выносящим артериолам. Далее она течет по сети перитубулярных капилляров, находящихся в почечном корковом веществе и окружающих проксимальные и дистальные извитые канальцы всех нефронов и петли Генле корковых нефронов. От этих капилляров отходят почечные прямые сосуды, идущие в почечном мозговом веществе параллельно петлям Генле и собирательным трубкам.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама