THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Электромиография - метод исследования нервно-мышечной системы путем регистрации электрических потенциалов мышц. Электромиография является информативным методом диагностики заболеваний спинного мозга, нервов, мышц и нарушений нервно-мышечной передачи. С помощью этого метода можно изучать структуру и функцию нейромоторного аппара­та, который состоит из функциональных элементов - двигательных единиц (ДЕ), куда входят мотонейрон и иннервируемая им группа мышечных воло­кон. Во время двигательных реакций одновременно возбуждается несколько мотонейронов, образующих функциональное объединение. На электромиограмме (ЭМГ) фиксируются колебания потенциалов в нервно-мышечных окончаниях (двигательных пластинках), которые возникают под влиянием импульсов, поступающих от мотонейронов продолговатого и спинного моз­га. Последние в свою очередь получают возбуждение от надсегментарных образований головного мозга. Таким образом, биоэлектрические потенциа­лы, отводимые с мышцы, могут опосредствованно отображать изменения функционального состояния и надсегментных структур.

В клинике для электромиографии применяют два способа отвода био­потенциалов мышц - с помощью игольчатых и накожных электродов. С по­мощью поверхностного электрода можно регистрировать лишь суммарную активность мышц, представляющую интерференцию потенциалов действия многих сотен и даже тысяч волокон.

Глобальная электромиография биопотенциалы мышц отводятся накожными поверхностными электродами, которые являются металли­ческими пластинками или дисками площадью 0,1-1 см 2 , вмонтированны­ми парами в фиксирующие колодки. Перед исследованием их покрывают марлевыми прокладками, смоченными изотоническим раствором натрия хлорида или токопроводящей пастой. Для фиксации применяют резиновые ленты или лейкопластырь. Интерференционную активность произволь­ного мышечного сокращения принято записывать при скорости движения бумажной ленты 5 см/с Метод поверхностных отведений биопотенциалов отличается атравматичностью, простотой обращения с электродами, от­сутствием опасности проникновения инфекции. Однако при глобальной электромиографии с использованием поверхностных электродов не удается зарегистрировать потенциалы фибрилляций и сравнительно труднеее вы­являются потенциалы фасцикуляций.

Нормальные и патологические характеристики ЭМГ при отведении поверхностными электродами. При визуальном анализе глобальной ЭМГ при ее отведении используют поверхностные электроды, которые дают об­щую характеристику ЭМГ-кривой, определяют частоту суммарной элек­трической активности мышц, максимальную амплитуду колебаний, относят ЭМГ к тому или другому типу. Выделяют четыре типа глобальной ЭМГ (по Ю.С. Юсевич, 1972).

Типы ЭМГ при поверхностном отведении (по Ю.С. Юсевич, 1972) :

1,2- тип I; 3, 4 - подтип II А; 5 - подтип II Б; 6 - тип III, ритмические колебания при тремо­ре; 7 - тип III, экстрапирамидная ригидность; 8 - тип IV, электрическое «молчание»

  • I тип - интерференционная кривая, представляющая собой высоко­частотную (50 за 1 с) полиморфную активность, которая возникает во время произвольного сокращения мышцы или при напряжения других мышц;
  • II тип - редкая ритмическая активность (6-50 за 1 с), имеет два под­типа: На (6-20 за 1 с) и IIб (21-50 за 1 с);
  • III тип - усиление частых колебаний в состоянии покоя, группировка их в ритмические разряды, появление вспышек ритмических и неритмиче­ских колебаний на фоне произвольного мышечного сокращения;
  • IV тип электрическое «молчание» мышц во время попытки произ­вольного мышечного сокращения.

ЭМГ I типа характерна для нормальной мышцы. Во время максималь­ного мышечного сокращения амплитуда колебаний достигает 1-2 мВ в за­висимости от силы мышцы. ЭМГ I типа может наблюдаться не только во время произвольного мышечного сокращения, но и при синергическом на­пряжении мышц.

Интерференционная ЭМГ сниженной амплитуды определяется при первичных мышечных поражениях. ЭМГ II типа характерна для поражения передних рогов спинного мозга. Причем подтип IIб соотвествует относи­тельно менее грубому поражению, чем подтип На. ЭМГ подтипа IIб отли­чается большей амплитудой колебаний, в некоторых случаях она достигает 3000-5000 мкВ. В случае глубокого поражения мышц отмечаются более рез­кие колебания подтипа На, нередко сниженной амплитуды (50 150 мкВ).

Этот тип кривой наблюдается при поражении большинства нейронов перед­них рогов и уменьшении количества функциональных мышечных волокон.

ЭМГ II типа в начальных стадиях поражения передних рогов спинного мозга может не выявляться в состоянии покоя, с наибольшей вероятностью, он маскируется интерференционной активностью при максимальном мы­шечном сокращении. В таких случаях для выявления патологического про­цесса в мышцах используют тонические пробы (близкие синергии).

ЭМГ III типа характерна для различного рода супраспинальных рас­стройств двигательной активности. При пирамидном спастическом па­раличе на ЭМГ регистрируется повышенная активность покоя, при паркинсоническом треморе наблюдаются ритмические вспышки активности, соответствующие по частоте ритму дрожания, при гиперкинезах - нерегу­лярные разряды активности, соответствующие насильственным движениям тела вне произвольных движений или накладывающимися на нормальный процесс мышечного произвольного сокращения.

ЭМГ IV типа свидетельствует о полном параличе мышц. При перифе­рическом параличе он может быть обусловлен полной атрофией мышечных волокон, при остром невритическом поражении - свидетельствовать о вре­менном функциональном блоке передачи по периферическому аксону.

Во время глобальной электромиографии определенный диагностиче­ский интерес вызывает общая динамика ЭМГ в процессе совершения произ­вольного движения. Так, при супраспинальных поражениях можно наблю­дать увеличение времени между приказом о начале движения и нервными разрядами на ЭМГ. При миотонии характерно значительное продолжение активности ЭМГ после инструкции о прекращении движения, соответству­ющее известной миотонической задержке, наблюдаемой клинически.

При миастении во время максимального мышечного усилия наблюдается быстрое уменьшение амплитуды и частоты разрядов на ЭМГ, соответствую­щее миастеническому падению силы мышц во время ее продолжительного напряжения.

Локальная электромиография

Для регистрации потенциалов действия (ПД) мышечных волокон или их групп используют игольчатые электроды, вводимые в толщу мышцы. Они могут быть концентрическими. Это полые иглы диаметром 0,5 мм со вставленной внутрь изолированной проволокой, стержнем из платины или нержавеющей стали. Биполярные игольчатые электроды внутри иглы содержат два одинаковых изолированных один от другого металлических стержня с обнаженными кончиками. Игольчатые электроды позволяют регистрировать потенциалы двигательных единиц и даже отдельных мышечных волокон.

На ЭМГ, записанных таким способом, можно определить длительность, амплитуду, форму и фазность ПД. Электромиография с помощью игольча­тых электродов является основным способом диагностики первично мы­шечных и нервно-мышечных заболеваний.

Электрографическая характеристика состояния двигательных единиц (ДЕ) у здоровых людей. Параметры ПД ДЕ отражают количество, размер, взаимное расположение и плотность распределения мышечных волокон в данной ДЕ, занимаемую его территорию, особенности распространения ко­лебаний потенциала в объемном пространстве.

Основными параметрами ПД ДЕ являются амплитуда, форма и длитель­ность. Параметры ПД ДЕ различаются, поскольку в ДЕ включается неоди­наковое число мышечных волокон. Поэтому для получения информации о состоянии ДЕ данной мышцы необходимо зарегистрировать не менее 20 ПД ДЕ и представить их среднюю величину и гистограмму распределения. Средние показатели продолжительности ПД ДЕ в различных мышцах у лю­дей разного возраста приведены в специальных таблицах.

Продолжительность ПД ДЕ в норме колеблется в зависимости от мышцы и возраста обследуемого в пределах 5-13 мс, амплитуда - от 200 до 600 мкВ.

В результате нарастания степени произвольного усилия включается все большее число ПД, которое дает возможность в одном положении отведен­ного электрода зарегистрировать до 6 ПД ДЕ. Для регистрации других ПД ДЕ электрод перемещают в различных направлениях по методу «куба» на различную глубину исследуемой мышцы.

Патологические феномены на ЭМГ при отведении игольчатыми элек­тродами. У здорового человека в состоянии покоя электрическая актив­ность, как правило, отсутствует, при патологических состояниях регистри­руется спонтанная активность. К основным формам спонтанной активности принадлежат потенциалы фибрилляций (ПФ), позитивные острые волны (ПОВ) и потенциалы фасцикуляций.

а - Пф; б - ПОВ; в - потенциалы фасцикуляций; г - падающая амплитуда ПД во время миотонического разряда (сверху - начало разряда, внизу - его окончание).

Потенциалы фибрилляций - это электрическая активность единичного мышечного волокна, не вызываемая нервным импульсом и возникающая повторно. В нормальной здоровой мышце ПФ - типичный признак денервации мышц. Возникают они чаще всего на 15-21-й день после прерывания нерва. Средняя продолжительность отдельных осцилляции 1-2 мс, амплитуда - 50-100 мкВ.

Позитивные острые волны, или позитивные спайки. Их появление свиде­тельствует о грубой денервации мышц и дегенерации мышечных волокон. Средняя продолжительность ПОВ 2-15 мс, амплитуда 100-4000 мкВ.

Потенциалы фасцикуляций имеют параметры, близкие к параметрам ПД ДЕ той же мышцы, но возникают они во время полного ее расслабления.

Появление ПФ и ПОВ свидетельствует о нарушении контакта мышечных волокон с иннервирующими их аксонами двигательных нервов. Это может быть следствием денервации, длительного нарушения нервно-мышечной передачи или механического разъединения мышечного волокна с той его ча­стью, которая находится в контакте с нервом. ПФ могут наблюдаться также при некоторых расстройствах обменного характера - тиреотоксикозе, нару­шении обмена в митохондриальном аппарате мышц. Поэтому прямого отно­шения к установлению диагноза выявление ПФ и ПОВ не имеет. Однако на­блюдение за динамикой выраженности и формами спонтанной активности, а также сопоставление спонтанной активности и динамики параметров ПД ДЕ почти всегда помогают определить характер патологического процесса.

В случаях денервации при наличии травм и воспалительных заболе­ваниях периферических нервов нарушение передачи нервных импульсов проявляется исчезновением ПД ДЕ. Через 2-4 сут от начала заболевания появляются ПФ. По мере прогрессирования денервации частота выявления ПФ возрастает - от единичных в отдельных участках мышцы до заметно вы­раженных, когда несколько ПФ регистрируются в любом месте мышцы. На фоне большого числа потенциалов фибрилляций появляются и позитивные острые волны, интенсивность и частота которых в разряде увеличиваются по мере нарастания денервационных изменений в мышечных волокнах. По мере денервации волокон число регистрируемых ПФ уменьшается, а число и раз­меры ПОВ возрастают, причем преобладают ПОВ большой амплитуды. Че­рез 18-20 мес после нарушения функции нерва регистрируются лишь гигант­ские ПОВ. В тех случаях, когда намечается восстановление функции нерва, выраженность спонтанной активности уменьшается, что является хорошим прогностическим признаком, предшествующим возникновению ПД ДЕ.

По мере увеличения ПД ДЕ, спонтанная активность уменьшается. Од­нако ее можно обнаружить и через много месяцев после клинического вы­здоровления. При воспалительных заболеваний мотонейронов или аксонов, протекающих вяло, первым признаком патологического процесса является возникновение ПФ, а затем ПОВ, и только значительно позднее наблюдает­ся изменение структуры ПД ДЕ. В таких случаях по типу изменений ПД и ДЕ можно оценить стадию денервационного процесса, а по характеру ПФ и ПОВ - остроту заболевания.

Появление потенциалов фасцикуляций свидетельствует об изменениях функционального состояния мотонейрона и указывает на его вовлечение в патологический процесс, а также на уровень поражения спинного мозга. Фасцикуляций могут возникать и при тяжелых нарушениях деятельности аксонов двигательных нервов.

Стимуляционная электронейромиография. Ее целью является изуче­ние вызванных ответов мышцы, т. е. электрических явлений, возникающих в мышце вследствие стимуляции соответствующего двигательного нерва. Это позволяет исследовать значительное количество явлений в перифери­ческом нейромоторном аппарате, из которых наиболее распространенными являются скорость проведения возбуждения по двигательным нервам и со­стояние нервно-мышечной передачи. Для измерения скорости проведения возбуждения по двигательному нерву отводящий и стимулирующий элек­троды устанавливают соответственно над мышцей и нервом. Сначала реги­стрируют М-ответ на стимуляцию в проксимальной точке нерва. Моменты подачи стимула синхронизируют с запуском горизонтальной раскладки осциллографа, на вертикальные пластинки которого подается усиленное напряжение ПД мышцы. Таким образом, в начале полученной записи от­мечается момент подачи стимула в виде артефакта раздражения, а через некоторый промежуток времени - М-ответ, имеющий обычно двухфазную негативно-положительную форму. Промежуток от начала артефакта раз­дражения до начала отклонения ПД мышцы от изоэлектрической линии определяет латентное время М-ответа. Это время соответствует проведе­нию по волокнам нерва с наибольшей проводимостью. Дополнительно к регистрации латентного времени ответа из проксимального пункта стиму­ляции нерва измеряют латентное время ответа на стимуляцию одного и того же нерва в дистальном пункте и высчитывают скорость проведения возбуждения V по формуле:

где L расстояние между центрами пунктов приложения активного стимулирующего электрода по ходу нерва; Тр латентное время ответа в случае стимуляции в проксимальном пункте; Td латентное время ответа при стимуляции в дистальном пункте. Нормальная скорость проведения по периферическим нервам составляет 40-85 м/с.

Значительные изменения скорости проведения выявляются при про­цессах, поражающих миелиновую оболочку нерва, демиелинизирующих полинейропатиях и травмах Большое значение этому методу отводится в диагностике так называемых туннельных синдромов (последствиями (дав­ления нервов в костно-мышечных каналах): карпального, тарсального, кубитального и т. п.

Изучение скорости проведения возбуждения имеет также большое про­гностическое значение во время повторных исследований.

Анализ изменений, обусловленных ответом мышц при раздражениях не­рва сериями импульсов различной частоты, позволяет оценить состояние нервно-мышечной передачи. При супрамаксимальной стимуляции двига­тельного нерва каждый стимул возбуждает все его волокна, что в свою оче­редь вызывает возбуждение всех волокон мышцы.

Амплитуда ПД мышцы пропорциональна количеству возбужденных мы­шечных волокон. Поэтому уменьшение ПД мышцы отображает изменение количества волокон, которые получили соответствующий стимул от нерва.

В предыдущей части статьи я немного рассказал о таком методе функциональной диагностики нервной системы, как регистрация вызванных потенциалов головного мозга. Данный метод позволяет изучить различные отделы центральной нервной системы.

Что такое "периферическая нервная система"?

Но ведь представить себе функционирование нашего организма без периферической нервной системы тоже невозможно. Для ее обследования используется электронейромиография .

Периферические нервы берут свое начало в спинном мозге и нервных узлах, расположенных рядом с ним в виде «корешков». По своим функциям периферические нервы делятся на моторные (отвечающие за работу мышц), сенсорные (обеспечивающие чувствительность) и вегетативные (в компетенции которых работа внутренних органов).

Нервные корешки, выходя из спинного мозга, распадаются на парные сплетения (шейные, плечевые, поясничные и крестцовые), которые, в свою очередь, распадаются на сами периферические нервы. Сенсорные нервы получают информацию от рецепторов (для каждого «типа» ощущений – боли, температуры, прикосновения, давления и т.д. – существуют свои виды рецепторов), моторные нейроны связаны с мышечными волокнами посредством нервно-мышечных синапсов. С помощью специальных синапсов контактируют с клетками внутренних органов и вегетативные нервы.

Очень упрощенно, типичный периферический нерв можно представить в виде электрического кабеля, состоящего из множества мелких проводов, объединенных одной оболочкой. «Электричество», то есть нервный импульс, в нерве передается по оболочке, а не по внутренней части «проводов». «Провод» называется аксоном и является отростком самой нервной клетки (нейрона), расположенной в спинном мозге (длина аксона, иннервирующего мышцу стопы может достигать метра и более). «Оболочка» провода – вещество миелин, обеспечивающее передачу нервного импульса по аксону.

Я намеренно так остановился на описании строения периферической нервной системы, чтобы ЭНМГ (электронейромиография) не казалась Вам в дальнейшем каким-то странным, загадочным, «шаманским» методом. Итак, в нашем организме есть хитросплетение кабелей, проводящих ток, кабели состоят из проводов, имеющих оболочку. Поломка этой системы возможна на любом уровне (от клетки в спинном мозге до нервно-мышечного синапса) и может возникнуть как за счет повреждения самого провода, так и его оболочки. Цель ЭНМГ – найти место повреждения и определить его характер.

Конечно, электронейромиография не является волшебным и универсальным диагностическим методом (как не является им ни одна из других, более известных в широких кругах методик, например МРТ). Не все нервы и мышцы доступны изучению, не на всех участках их можно проверить. Но при грамотном подходе со стороны врача, назначающего или проводящего ЭНМГ, данный метод может дать много полезной информации.

Так что же представляет из себя стимуляционная ЭНМГ?

Стандартный метод исследования моторных и сенсорных волокон периферических нервов внешне выглядит несложно. Над поверхностью мышцы или на участок кожи, иннервируемой изучаемым нервом, накладываются электроды (чаще всего они похожи на маленький пластырь или наклейку), электроды подключаются к аппаратуре (электронейромиографу). На участках, где нерв находится не очень глубоко, с помощью специального стимулятора (отдаленно напоминающего штекер любого электроприбора) нерв раздражается разрядами электрического тока. Ток слабый и абсолютно безопасен, хотя ощущения могут быть и неприятными. В результате электрического раздражения происходит сокращение мышцы или возникает ответ в кожных покровах (в случае исследования сенсорных волокон). Этот ответ или сокращение мышцы и регистрируется наклейками-электродами. Полученные данные и анализируются врачом.

Декремент-тест

Исследование и анализ состояния большинства крупных нервов конечностей обычно не вызывает сложностей. Оценка состояния сплетений и нервных корешков более сложна, ведь, как рассказывалось выше, они образуются из множества периферических нервов, и возникает необходимость исследовать почти каждый из них.

Для диагностики заболеваний нервно-мышечного синапса используется метод ритмической стимуляции или «декремент-тест ». При выполнении декремент-теста нерв стимулируется несколько раз (обычно пять) с высокой частотой стимулов (около 1 в секунду), мышца вынуждена сократиться пять раз подряд за пять секунд. Если синапс функционирует нормально, то все пять раз импульс от нерва вызывает сокращение мышцы с одинаковой силой. Если синапс поврежден – мышца с каждым разом сокращается слабее. Разумеется – это очень упрощенное разъяснение сути ритмической стимуляции (декремент-теста ).

Игольчатая ЭНМГ

Для исследования мышц, а это бывает необходимо при подозрении на патологию двигательного нейрона спинного мозга, при заболеваниях мышц, определении степени поражения мышцы при неврологической патологии, используется игольчатая электромиография . Тонкая игла-электрод вводится в исследуемую мышцу (напоминает внутримышечный укол). Регистрируют электрическую активность мышцы в покое и при умеренном напряжении. Игольчатая ЭНМГ – более сложный с точки зрения интерпретации метод и часто занимает больше времени, требует от врача большей квалификации.

Возможности электронейромиографии

Итак, при правильном использовании электронейромиография позволяет:

  • проводить диагностику заболевания нервов и мышц на ранних стадиях, когда при клиническом осмотре отклонений еще не наблюдается;
  • установить уровень поражения нерва;
  • провести дифференциальную диагностику между периферическим поражением нерва и радикулопатией (поражение нервного корешка), и плексопатией (поражение сплетения);
  • оценить тяжесть поражения периферической нервной системы и мышц;
  • оценить результаты лечения и степень восстановления, характер течения заболевания;
  • помочь в дифференциальной диагностике причин нарушения мочеиспускания и/или потенции.

Показания для исследования

Почему же ЭНМГ редко назначается врачами? Может быть, мало показаний для назначения исследования?

Ниже приведен список симптомов, синдромов, состояний и заболеваний, при которых может быть назначена электронейромиография.

Симптомы:

  • слабость в мышцах и/или их повышенная утомляемость;
  • непроизвольные сокращения, подергивания, судороги мышц;
  • атрофия («похудение») мышц;
  • снижение или изменение чувствительности на конечностях и/или лице;
  • боли в руках /ногах, сопровождающиеся «прострелами»;
  • боли в шее и/или спине;
  • нарушение потенции и мочеиспускания.

Вот неполный список заболеваний, при которых может быть целесообразно провести электронейромиографию :

  • БАС (боковой амиотрофический склероз, болезнь двигательного нейрона)
  • Диабетическая полинейропатия
  • Миастенический синдром Ламберта-Итона
  • Миастения (myasthenia gravis)
  • Миелодисплазия спинного мозга
  • Миозит и полимиозит
  • Миопатии
  • Неврит тройничного нерва
  • Мононевропатия
  • Невропатия седалищного нерва
  • Паралич Белла (невропатия лицевого нерва)
  • Плексит
  • Плексопатия
  • Полимиалгия
  • Полиневрит
  • Радикулопатия при грыже межпозвонкового диска
  • Синдром Гийена-Барре
  • Синдром запястного канала (карпальный синдром)
  • Кубитальный синдром
  • Синдром Толоса-Ханта
  • СМА (спинальные мышечные атрофии)
  • Тригеминальная невралгия
  • Туннельные синдромы
  • Фибулярный синдром
  • Хроническая воспалительная демиелинизирующая полинейропатия (ХВДП)
  • Сахарный диабет и диабетическая полинейропатия
  • Миелит, энцефаломиелит
  • Дефицит витаминов В, Е, С
  • Гипотиреоз, гипертиреоз
  • Системная красная волчанка
  • Васкулит
  • Рассеянный склероз
  • Хроническая тазовая боль
  • Нейрогенный мочевой пузырь

Как видно, список не маленький, а главное включает в себя не только чисто неврологические заболевания. Заболевания внутренних органов не редко дают осложнения в виде поражения нервной системы. К примеру, атрофический гастрит может привести к дефициту витамина группы В, тем самым спровоцировать возникновение полинейропатии или поражения спинного мозга. Ну а самый известный пример – это поражение нервов ног при сахарном диабете (диабетическая полинейропатия).

Представляется, что основной причиной малого использования ЭНМГ и ЭМГ является затруднение при интерпретации результатов врачами. Дело в том, что максимальное количество информации можно получить только тогда, когда врач, проводящий ЭНМГ, хорошо разбирается в неврологических заболеваниях и симптомах, а лечащий врач знает о всех нюансах и особенностях электромиографии. В противном случае врач-диагност может провести исследование не в полном объеме, а лечащий доктор может неверно интерпретировать результат, что приведет к постановке ошибочного диагноза.

Таким образом, диагност в любом случае должен быть еще и неврологом, в идеале обследование должен выполнять сам лечащий врач-невролог или ЭНМГ должно проводиться в том учреждении, где лечится обследуемый (в таком случае имеется обратная связь между врачом и диагностом).

Как правильно – ЭНМГ или ЭМГ?

И в завершении немного о путанице в терминологии. Часто встречаются два названия исследования: «электронейромиография» (т.е. ЭНМГ) и «электромиография » (ЭМГ). Как говорилось выше, есть стимуляционная электромиография и игольчатая. Именно игольчатую иногда называют «ЭМГ» или «электромиография», а стимуляционную – «электронейромиография» или «ЭНМГ». В конечном итоге, как таковой разницы нет, потому что именно сочетание стимуляционного и игольчатого методов позволяет всесторонне изучить патологический процесс. К тому же, если доктор направляет Вас на обследование, то правильнее было бы с его стороны либо указать, какие именно нервы и мышцы он хочет исследовать и с какой целью, либо (в том случае если врач, проводящий ЭНМГ – невролог) оставить определение необходимого объема обследования на усмотрение диагноста.

В двух частях этой статьи мы коротко ознакомились с функциональной диагностикой центральной и периферической нервной системы. Точнее, всего с двумя методами – вызванными потенциалами и электронейромиографией. Но, конечно, таких методов много больше – это и известная многим электроэнцефалография (ЭЭГ), и различные виды длительного мониторирования ЭЭГ, полисомнография, кардиореспираторный скрининг и многие другие. О них мы поговорим в другой раз.

При диагностике различных заболеваний опорно-двигательного аппарата наряду с другими методами исследования широко применяется ЭМГ – электромиография. Она помогает определить причины болей в спине и мышцах, нарушения моторной функции, динамику процесса восстановления двигательной деятельности после операций или травм. Электромиография – это метод диагностики, заключающийся в улавливании биоэлектрических потенциалов мышц в покое и при сокращении, а также в изучении их активности. Впервые он был применен немецким ученым Г. Пипером в 1907 году, но широкое распространение получил только к середине 20 века.

В чем суть метода

Проводится исследование с помощью особого прибора электромиографа. Он улавливает электрические импульсы от мышц с помощью контактных электродов. Прибор выводит данные на экран компьютера, где они записываются и анализируются.

Суть метода в том, что физиология мышц связана с прохождением электрического импульса к ним от нервов. Именно этот сигнал вызывает их сокращение. При различных патологиях работы головного или спинного мозга, а также при повреждении нервов или мышечных волокон прохождение импульсов может быть нарушено. Это заметно по изменению их амплитуды и длительности, снижению числа импульсов или же появлению их в покое.

В каждом движении человека задействовано множество мышц, именно от их правильной работы зависят многие функции организма. Нарушение нервно-мышечной проводимости может вызвать судороги, онемение, слабость или боли. После электромиографического обследования возможно определить не только причину этих проблем. Такой метод помогает выявить характер нарушения, локализацию и степень распространения процесса, стадию и тяжесть поражения нервно-мышечной системы. ЭМГ проводится для того, чтобы поставить точный диагноз, правильно назначить лечение и контролировать его эффективность.

Виды исследования

Современная электромиография – это сложная процедура, имеющая несколько разновидностей. В зависимости от способа и цели исследования различают три вида ЭМГ.

  1. Поверхностная, или глобальная электромиография – самый безболезненный способ обследовать активность мышцы. Он заключается в наложении плоских металлических электродов на кожу и позволяет получить самую общую картину состояния нервно-мышечной системы. К тому же картина может искажаться наличием жировой прослойки под кожей, непроизвольными движениями пациента, правильностью наложения электродов относительно мышцы. Несмотря на то, что этот вид исследования мало информативен, именно его чаще всего применяют для детей и тяжело больных пациентов.
  2. – это локальное исследование, при котором в мышцу вводятся электроды в виде тонких игл. Этот метод более точен, но имеет свои показания и противопоказания. Из-за того, что он вызывает небольшую боль при введении иглы, его чаще применяют для взрослых людей. Поэтому, каким именно способом обследовать пациента, решает врач в зависимости от его общего состояния, диагноза и сопутствующих заболеваний.
  3. Стимуляционная электромиография помогает определить степень поражения нервов и мышц, например, при парезах или параличах. Она проводится путем анализа ответа мышц на их электрическую стимуляцию. С ее помощью можно определить, в каком месте нарушено прохождение импульса от нерва к мышце. Так как при этом исследовании задействованы нервные волокна, эта методика еще называется электронейромиография.


Самый безболезненный метод исследования заключается в наложении электродов на кожу

В зависимости от того, какая группа мышц обследуется, различают такие виды: ЭМГ верхних и нижних конечностей, жевательных или мимических мышц. Исследование помогает определить причины их слабости или потери чувствительности, нарушения двигательной активности. ЭМГ может проводиться как на отдельных мышцах и нервах, например, при обследовании седалищного нерва или мимических мышц лица, так и на всем протяжении рук или ног. Обычно при диагностике нижних и верхних конечностей необходимо проанализировать работу мышц одновременно с двух сторон.


Иногда возникает необходимость при проведении обследования искусственно стимулировать активность мышц с помощью электрического импульса

Показания

Электромиографию назначают при любых патологиях опорно-двигательного аппарата, связанных с нарушением двигательной активности, поражением мышц или нервных волокон. Она помогает уточнить диагноз, а во время лечения заболевания применяется для того, чтобы проконтролировать эффективность терапии. Эта методика нужна для определения причины таких состояний:

Кроме того, существуют более серьезные показания к электромиографии. Ее обязательно проводят при подозрении на заболевания мышц или нервной системы. Такой метод помогает поставить диагноз на ранней стадии, когда еще не наблюдается видимых симптомов. Кроме того, она необходима при лечении ботулизма, полиомиелита, микроинсульта для определения степени поражения нервно-мышечной системы и анализа динамики ее восстановления.

С помощью ЭМГ можно определить наличие миастении, миопатии, дистонии мышц, полимиозита. Проводится электромиография рук и ног при различных патологиях позвоночника: остеохондрозе, травмах, радикулопатии, грыжах дисков, корешковом синдроме.

Электронейромиография является основным методом диагностики различных неврологических заболеваний, связанных с поражением периферических нервов. Она помогает вовремя диагностировать сдавление нервных корешков, амиотрофический или рассеянный склероз, болезнь Паркинсона, туннельный синдром, травмы нервных корешков, головного или спинного мозга, а также различные нейропатии. Этот метод уникален тем, что только он способен выявить на ранней стадии диабетическое поражение нервов нижних конечностей.

Локальная электромиография необходима также в косметологии. С ее помощью определяют точное место введения ботокса при омолаживающих процедурах. Частое применение электромиографии в стоматологии связано с тем, что при некоторых патологиях зубов происходит снижение электрического потенциала мышц. Этот метод позволяет определить стадию пародонтоза, наличие перелома челюсти или воспалительных заболеваний. Он применяется при протезировании, параличе лицевого нерва, для контроля исправления прикуса. Такие патологии часто отражаются на функционировании некоторых мимических, а также жевательных мышц.

Обязательно нужно пройти ЭМГ несколько раз во время лечения заболеваний опорно-двигательного аппарата. Это позволяет контролировать его эффективность, фиксировать улучшения или процесс восстановления мышц после травм или операций. ЭМГ позволяет выбрать оптимальное время для начала реабилитации, подобрать наиболее эффективные упражнения. Применяется такое исследование также при протезировании суставов, чтобы анализировать скорость восстановления двигательной активности.


Электромиография позволяет на ранних стадиях диагностировать многие заболевания опорно-двигательного аппарата

Но не только для лечения патологий нужна ЭМГ. Этот метод используют для анализа работы мышц при выполнении определенной работы или физических упражнений. С его помощью изучают координацию движений, время развития утомления, особенности функционирования мышц после пересадки. Таким способом ученые смогли создать биоэлектрические протезы, управляемые нервными импульсами.

Как проводится процедура

Во многих западных странах обучение методу ЭМГ проходят все врачи-реабилитологи. В нашей стране такое обследование проводится врачами-диагностами. А расшифровкой результатов и окончательной постановкой диагноза занимаются неврологи, ортопеды, хирурги. Для диагностики используется электромиограф, различные электроды, которые соединены с приборами тонкими проводками, а также осциллоскоп или компьютер, который регистрирует результаты. Кроме того, иногда прибор подсоединяют к аудиоусилителю для того, чтобы колебания импульсов мышцы можно было слышать.

Особой подготовки для проведения ЭМГ не требуется. Ее можно сделать как в стационаре, так и в поликлинике. Но перед исследованием несколько часов нельзя курить и употреблять продукты, повышающие возбудимость нервной системы. Также рекомендуется за 3-5 дней прекратить прием некоторых препаратов, особенно миорелаксантов.


Во время проведения процедуры нужно занять удобное положение, чтобы обследуемые мышцы были расслаблены

Вся процедура занимает 30-60 минут. Пациент должен сесть в кресло или лечь и принять удобное положение. Главное, чтобы мышцы, которые должны быть обследованы, расслабились. Врач обрабатывает кожу антисептиком и накладывает электроды. Сначала делают анализ импульсов от мышцы в расслабленном состоянии. Потом пациент ее медленно напрягает. Иногда ее активность стимулируют искусственно.

В большинстве случаев процедура безболезненна, но при проведении игольчатой электромиографии пациент может испытывать неприятные ощущения в мышцах после ее окончания. В этом случае ему рекомендуют делать согревающие компрессы и принимать обезболивающие препараты. Иногда в месте прокола наблюдается небольшая гематома, которая проходит самостоятельно за несколько дней.

Расшифровка результатов

Такое обследование показывает разные результаты в зависимости от тяжести течения заболевания. Прохождение электрических импульсов во время процедуры выводится на экран компьютера или осциллограф. Их запись немного напоминает результаты ЭКГ. На снимке или бумаге видно чередование импульсов различной амплитуды и частоты в виде графика. Расшифровкой занимается врач, который назначил пациенту это обследование. При многих заболеваниях, например, миастении или болезни Паркинсона, наблюдаются характерные признаки, поэтому диагноз можно поставить сразу.


Данные, выведенные на монитор компьютера, анализируются врачом

Бывает так, что клиническая картина, получаемая при исследовании, может искажаться. Результаты зависят от возраста пациента, его физического развития, наличия жировой прослойки под кожей. Нарушение свертываемости крови также может их искажать. Иногда пациент неправильно выполняет указания врача, не желая напрягать мышцу, когда нужно. Это не позволяет рассмотреть процесс в динамике.

При поражении мышц обычно общее число импульсов не отличается от нормальной картины. Снижается только их амплитуда и длительность прохождения. Постепенно угасает после напряжения мышцы частота колебаний при дистонии. А миастения характеризуется быстрым затуханием их амплитуды при продолжающихся нагрузках на мышцу.

При невропатиях и других патологиях периферической нервной системы наблюдается низкая активность импульсов. Они неравномерны по частоте, иногда регистрируются одиночные внеочередные импульсы. Это может наблюдаться при заболеваниях спинного мозга или болезни Паркинсона. А при полном поражении нервов электрическая активность мышц может совсем отсутствовать. В случае же миотонических судорог, наоборот, она может держаться длительное время.

Противопоказания

Общим противопоказанием для любого вида ЭМГ является прием сильнодействующих препаратов, влияющих на нервную систему. Не рекомендуется также проведение обследования после физиотерапевтических процедур. Как и большинство диагностических мероприятий, ЭМГ не делают при повышенной температуре, острых заболеваниях, эпилепсии, нарушениях психики и поражениях кожи в месте наложения электродов. Гипертонический криз, приступ стенокардии, алкогольное опьянение или наличие кардиостимулятора тоже могут быть препятствием для данного метода обследования.


Есть определенные противопоказания для проведения такого обследования

Игольчатая электромиография, которая связана с введением игл под кожу, имеет еще другие противопоказания. Не проводят ее при склонности к кровотечениям, некоторых инфекциях, передающихся через кровь, а также детям до 8 лет и пациентам с повышенной болевой чувствительностью.

Электромиография – это сейчас очень распространенный метод диагностики разных заболеваний. Его применяют невропатологи, нейрохирурги, ортопеды, травматологи, эндокринологи и другие врачи. Ведь такое исследование позволяет проанализировать работу нервно-мышечной системы и определить причины патологий.

Электромиография – регистрация электрических потенциалов скелетных мышц. Ее используют как метод исследования нормальной и нарушенной функции двигательного аппарата человека и животных. Электромиография включает методики по изучению электрической активности мышц в состоянии покоя, при произвольных, непроизвольных и вызванных искусственными раздражениями сокращениях.

С помощью электромиографии изучают функциональное состояние и функциональные особенности мышечных волокон, двигательных единиц, нервно-мышечной передачи, нервных стволов, сегментарного аппарата спинного мозга, изучают координацию движений, выработку двигательного навыка при различных видах работы и спортивных упражнениях, при утомлении.

Электромиограмма (ЭМГ) – кривая, получаемая на бумаге при регистрации электрических потенциалов скелетных мышц. На ней определяют форму, длительность и амплитуду потенциала.

При слабом сокращении мышц регистрируются или потенциалы отдельной двигательной единицы или потенциал многих двигательных единиц. При среднем по силе и сильном сокращениях регистрируется интерференционная ЭМГ, в которой практически невозможно выделить потенциалы отдельных двигательных единиц.

У здоровых людей в хорошо расслабленных мышцах или не выявляется никаких колебаний потенциала, или выявляются низкоамплитудные колебания. При слабом сокращении регистрируются более редкие и неравномерные по амплитуде колебания потенциала, при сильном сокращении возрастают частота и амплитуда колебаний. Частота колебаний может быть разной в различных мышцах, а также в одних и тех же группах мышц у различных испытуемых. В среднем частота колебаний составляет 100 Гц. Амплитуда колебаний зависит от многих условий – развития мышц, их состояния, выраженности подкожного жирового слоя. В норме при максимальном по силе сокращении амплитуда может достигать 300-1200 мкВ.

б

Рис. 3. "Частокольная” форма ЭМГ в круговой мышце глаза при его зажмуривании у больного с парезом лицевого нерва после перенесенного полиомиелита:а - ЭМГ здоровой стороны; 6 - ЭМГ пораженной стороны.

В стоматологической практике регистрируютинтерференционную ЭМГ (через кожу, применяя электроды большой площади),локальную ЭМГ (от отдельной двигательной единицы, применяя игольчатые электорды) истимуляционную ЭМГ (регистрация потенциалов сокращающейся мышцы при раздражении её или нерва электрическим током). Анализируя ЭМГ изучают амплитуду, частоту и продолжительность электрической активности. Например, в норме потенциалы действия двигательных единиц жевательных мышц имеют продолжительность 9-10 мс, мимических – 5-7 мс. Амплитуда потенциалов не превышает 300 мкВ.

В норме наблюдается симметричная активность мышц и четкая смена фаз биоэлектрической активности мышц и периодов покоя. А при утрате, например, зубов с одной стороны, биоэлектрическая активность жевательных мышц на этой стороне резко падает. При значительной потере зубов возникает ослабление биотоков жевательных мышц.

Тема: Физиологические свойства скелетных мышц.

Скелетные мышцы обладают возбудимостью, проводимостью, лабильностью, сократимостью, эластичностью.

В зависимости от частоты раздражителя могут быть одиночные и тетанические сокращения мышцы. При раздражении мышцы одиночным стимулом возникаетодиночное мышечное сокращение. В нем различаютлатентный период (от начала раздражения до начала ответной реакции), периодукорочения (собственно сокращение) и периодрасслабления. Длительность одиночного сокращения от нескольких сотых секунды до 0,1-0,2 сек. Это значит, что одиночные сокращения мышцы будут при частоте импульсов менее 10 Гц. В таком режиме мышца способна работать длительное время без утомления. Однако развиваемое мышечное напряжение не достигает максимально возможных величин.

В ответ на более частое ритмическое раздражение (а именно такое получают наши мышцы) мышца длительно сокращается. Такое сокращение получило название тетаническое. Если каждый последующий импульс подходит к мышце в период, когда она начала расслабляться, возникаетзубчатый тетанус. Если интервал между раздражениями уменьшается так, что каждый последующий импульс приходит к мышце, в тот момент, когда она находится в фазе сокращения, возникаетгладкий тетанус.

Механизм образования тетануса объясняется суперпозицией и изменением возбудимости в процессе возбуждения. Раздражители, вызывающие тетанус, застают мышцу в фазу медленной деполяризации. Начало же быстрой деполяризации приводит к тому, что ткань теряет способность реагировать на раздражение. Эта фаза называетсяабсолютной рефрактерностью (невозбудимостью). Во время реполяризации возбудимость восстанавливается. Этот период называетсяотносительной рефрактерностью. Возбудимость в этот момент ниже исходной величины, во время же следовой реполяризации она возрастает и становится выше исходной. Эта фаза называетсяэкзальтацией (повышенной возбудимости). Именно в этот момент и действуют раздражители, вызывающие тетанус.

В зависимости от нагрузки различают следующие типы мышечного сокращения:

- изотонический – это сокращение мышцы, при котором ее волокна укорачиваются при постоянной внешней нагрузке;

- изометрический - это тип активации мышцы, при котором она развивает напряжение без изменения длины (лежит в основестатической работы);

- ауксотонический – это режим, в котором мышцы развивают напряжение и укорачиваются (лежит в основединамической работы).

Сила мышц – это наибольшая величина груза, который она может поднять.

Абсолютная сила мышц – это максимальный груз, который мышца поднимает на 1 см поперечного физиологического сечения.

Относительная сила мышц – это способность мышцы к подъему груза на единицу анатомического сечения мышцы.

КПД (коэффициент полезного действия) всех мышц человека равен 15-25%, у тренированных он выше – до 35%.

Закон средних нагрузок – мышца длительно и эффективно работает при средних нагрузках (оптимальном режим сокращения).

Рабочая гипертрофия – увеличение массы мускулатуры при длительных физических нагрузках (при гиподинамии наступает атрофия мышц).

Усталость – субъективное состояние, когда к нему присоединяются объективные признаки (падение силы, выносливости, скорости движений) и развиваетсяутомление.

В стоматологической практике определяют силу жевательных мышц. Сумма поперечного сечения жевательных мышц, поднимающих нижнюю челюсть на одной стороне лица равна 19,5 см 2 , а на обеих сторонах – 39 см 2 . Следовательно, абсолютная сила жевательных мышц равна – 390 кг. При развитии утомления жевательных мышц может наступить их замедленное расслабление –контракутура жевательных мышц.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама