THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама
Биология. Общая биология. 10 класс. Базовый уровень Сивоглазов Владислав Иванович

12. Прокариотическая клетка

12. Прокариотическая клетка

Вспомните!

В чём заключаются принципиальные отличия в строении прокариотических и эукариотических клеток?

Какова роль бактерий в природе?

Разнообразие прокариот. Царство прокариот в основном представлено бактериями, наиболее древними организмами нашей планеты. Возникнув более 3,5 млрд лет тому назад, прокариоты фактически создали биосферу Земли, сформировав условия для дальнейшей эволюции организмов.

Впервые бактерии увидел под микроскопом и описал в 1683 г. голландский натуралист А. Левенгук. Размеры бактерий колеблются в пределах от 1 до 15 мкм. Отдельную бактериальную клетку можно увидеть только с помощью достаточно сложного микроскопа, поэтому их и называют микроорганизмами.

Бактерии обитают повсюду: в почве, в воде, в воздухе, на поверхности и внутри других организмов, в пищевых продуктах. Некоторые бактерии поселяются в горячих источниках, где температура воды достигает 78 °С и выше. Число бактерий на планете огромно, например в 1 г плодородной почвы содержится около 2,5 млрд бактериальных клеток.

Форма клеток бактерий чрезвычайно разнообразна (рис. 39). Выделяют палочковидные – бациллы , сферические – кокки , спиралевидные – спириллы , имеющие форму запятой – вибрионы .

Рис. 39. Некоторые представители современных бактерий: А – стрептококк (в процессе деления); Б – холерный вибрион; В – палочковидная бактерия клостридиум; Г – палочковидная микобактерия, вызывающая туберкулёз

Рис. 40. Образование спор у бактерий

Многие прокариоты способны к спорообразованию (рис. 40). Споры возникают, как правило, в неблагоприятных условиях и представляют собой клетки с резко сниженным уровнем метаболизма. Споры покрыты защитной оболочкой, сохраняют жизнеспособность в течение сотен и даже тысяч лет и выдерживают колебания температуры от?243 до 140 °С. При наступлении благоприятных условий споры «прорастают» и дают начало новой бактериальной клетке.

Таким образом, спорообразование у прокариот является этапом жизненного цикла, обеспечивающим переживание неблагоприятных условий окружающей среды. Кроме этого в состоянии спор микроорганизмы могут легко распространяться при помощи ветра и другими способами.

Споры болезнетворных бактерий, в покоящемся состоянии пролежавшие многие годы в земле, попадая при различных земляных работах в водоёмы, могут служить причиной возникновения вспышек инфекционных заболеваний. Так, например, споры палочки сибирской язвы сохраняют жизнеспособность в течение более 30 лет.

Учёные-микробиологи вырастили колонии микроорганизмов из спор, оказавшихся в образце льда, возраст которого превышал 10 тыс. лет.

Строение прокариотической клетки. Рассмотрим принципиальное строение бактериальной клетки (рис. 41).

Клетка окружена мембраной обычного строения, кнаружи от которой находится клеточная стенка . В центральной части цитоплазмы располагается одна кольцевая молекула ДНК , не отграниченная мембраной от остальной части цитоплазмы. Зона клетки, содержащая генетический материал, носит название нуклеоид (от лат. nucleus – ядро и греч. eidos – вид). Кроме основной кольцевой «хромосомы» бактерии обычно содержат несколько мелких молекул ДНК в форме небольших, свободно расположенных колец, так называемых плазмид , участвующих в обмене генетическим материалом между бактериями.

В бактериальных клетках нет мембранных органоидов, характерных для эукариот (эндоплазматической сети, аппарата Гольджи, митохондрий, пластид, лизосом). Функции этих органоидов выполняют впячивания клеточной мембраны.

Рис. 41. Строение прокариотической клетки

Обязательными органоидами, которые обеспечивают синтез белка в бактериальных клетках, являются рибосомы .

Поверх клеточной стенки многие бактерии выделяют слизь, образуя своеобразную капсулу , дополнительно защищающую бактерию от внешних воздействий.

Бактерии размножаются простым делением надвое. После редупликации кольцевой ДНК клетка удлиняется и в ней образуется поперечная перегородка. В дальнейшем дочерние клетки расходятся или остаются связанными в группы.

Сравнивая прокариотическую и эукариотическую клетки, можно отметить, что строение двухмембранных органоидов – митохондрий и пластид, имеющих собственную кольцевую ДНК и рибосомы, синтезирующие РНК и белки, – напоминает строение бактериальной клетки. Это сходство послужило основой гипотезы о симбиотическом происхождении эукариот. Несколько миллиардов лет назад древние прокариотические организмы внедрялись друг в друга, в результате чего возникал взаимовыгодный союз (§ 15, учебник 11 класса).

К прокариотическим организмам относят также цианобактерии, часто называемые синезелёными водорослями. Эти древние организмы, возникшие около 3 млрд лет назад, широко распространены по всему миру. Известно около 2 тыс. видов цианобактерий. Большинство из них способны синтезировать все необходимые вещества, используя энергию света.

Таблица 3. Сравнительная характеристика клеток прокариот и эукариот

Вопросы для повторения и задания

1. В чём заключаются значение и экологическая роль прокариот в биоценозах?

2. Каким образом болезнетворные микроорганизмы влияют на состояние макроорганизма (хозяина)?

3. Опишите строение бактериальной клетки. Как вы думаете, почему у бактерий ДНК не образует комплекс с белками?

4. Как размножаются бактерии?

5. В чём сущность процесса спорообразования у бактерий? Сравните споры растений и грибов. В чём их сходство и принципиальные отличия?

Подумайте! Выполните!

1. Предположите, что произойдёт, если исчезнут все бактерии на Земле.

2. Как давно люди используют микроорганизмы?

3. В чём состоит сущность процессов пастеризации и стерилизации как меры борьбы с бактериями?

4. Что такое антибиотики? С какой целью их применяют?

5. Используя знания, полученные при изучении курса «Человек и его здоровье», расскажите об особенностях бактериальных инфекций, путях заражения, мерах профилактики и способах их лечения.

6. Организуйте и проведите исследование микроорганизмов в естественных продуктах (квашеная капуста, кисломолочные продукты, чайный гриб, дрожжевое тесто).

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Узнайте больше

Для доказательства того, что данный микроорганизм вызывает конкретное заболевание, Роберт Кох сформулировал три правила. Эти правила в дальнейшем получили название «триада Коха».

Микроб должен всегда встречаться при данной болезни, но его не должно быть у здоровых людей и при других болезнях.

Микроб нужно выделить в «чистую» культуру – посеять на питательную среду так, чтобы в неё не попали микробы другого вида.

Если взять микробов из чистой культуры и заразить ими лабораторных животных (мышей, кроликов и др.), то они должны заболеть той же самой болезнью.

Если все три правила выполняются, значит, исследуемый микроорганизм действительно является причиной данного заболевания.

Повторите и вспомните!

Человек

Бактериальные болезни человека. Среди бактерий существует много болезнетворных (патогенных) видов, вызывающих заболевания у человека. Впервые доказать болезнетворную роль бактерий удалось немецкому врачу и исследователю Роберту Коху. Он открыл бактерий-возбудителей многих заболеваний. В 1882 г. Кох выделил и описал возбудителя туберкулёза , которого позже стали называть палочкой Коха.

Одним из самых быстротекущих бактериальных заболеваний является чума . От первых признаков болезни до смерти может пройти всего несколько часов. Очень опасны газовая гангрена и столбняк . Их возбудители – бактерии, живущие в почве. Заражение происходит при попадании земли в глубокие раны. Поверхностные раны и ожоги часто инфицируются стафилококками и стрептококками, вызывающими гнойные воспаления .

Через воздух можно заразиться ангиной, коклюшем, дифтерией, туберкулёзом . Другие болезнетворные микробы могут попасть в организм через сырую воду, немытые овощи и фрукты, грязную посуду и руки. Такие заболевания, как холера, брюшной тиф, дизентерия , сопровождаются расстройством работы кишечника, болями в животе, повышением температуры.

Животные

Бактериальные болезни животных. У животных бактерии вызывают такие болезни, как сап, бруцеллёз, сибирская язва и многие другие. Этими болезнями может заразиться и человек, поэтому, например, в районах, где скот болеет бруцеллёзом, нельзя пить сырое молоко. Споры сибирской язвы легко переносят высыхание и холод, поэтому даже спустя 100 лет захоронения животных, погибших от этого заболевания, представляют опасность.

Растения

Бактериальные болезни растений. Около 10–15 % урожая всех культурных растений в настоящее время теряется из-за бактериальных болезней (бактериозов). Существуют бактерии, поражающие многие виды растений. Например, корневой рак развивается у винограда и разных плодовых деревьев, от мокрой гнили страдают капуста, картофель, лук, томаты. Специализированные бактерии поражают растения только одного вида или рода, вызывая такие заболевания, как бактериоз огурцов, пятнистость фасоли, кольцевую гниль и чёрную ножку картофеля и другие.

Для борьбы с бактериозами семена, саженцы, черенки, почву в парниках и теплицах дезинфицируют; растения обрабатывают специальными препаратами или антибиотиками; заболевшие растения уничтожают, а больные побеги обрезают. Для борьбы с бактериозами важное значение имеет выведение сортов, устойчивых к заражению.

Из книги Племенное дело в служебном собаководстве автора Мазовер Александр Павлович

ГРУДНАЯ КЛЕТКА Форма грудной клетки изменяется в зависимости от конституционального типа собаки, степени ее развития и возраста. Грудная клетка, вмещающая дыхательные органы, сердце и главнейшие кровеносные сосуды, должна быть объемистой. Объем груди обусловлен длиной,

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Бегство от одиночества автора Панов Евгений Николаевич

Клетка - элементарная частица жизни Эти беглые замечания о способах выработки энергии в клетках многоклеточного организма и в бактериальных клетках акцентируют весьма существенные различия в важнейших аспектах их жизнедеятельности. Несходны эти два класса клеток и

Из книги Путешествие в страну микробов автора Бетина Владимир

Бактериальная клетка в цифрах Благодаря биофизике - одной из отраслей науки, с которой мы уже познакомились в начале этой главы, - были получены весьма интересные данные. Возьмем, например, шаровидную бактериальную клетку диаметром 0,5 мкм. Поверхность такой клетки

Из книги Тайны биологии автора Фреск Клас

Клетка-ловушка Тебе понадобятся: клетка-ловушка, приманка (зерна, сыр, хлеб, колбаса), доска или черепицаДлительность опыта: 1–2 дня.Время проведения: поздняя осень - ранняя весна. Твои действия: Купи клетку-ловушку любого типа или сделай ее сам. Для этого возьми

Из книги Читая между строк ДНК [Второй код нашей жизни, или Книга, которую нужно прочитать всем] автора Шпорк Петер

Каждая клетка помнит о своем происхождении Конраду Уоддингтону мы обязаны не только метафорой эпигенетического ландшафта. В 1942 году он стал, как принято считать, крестным отцом понятия «эпигенетика». Слово «эпигенотип» он впервые употребил уже в 1939-м - в своем «Введении

Из книги Естественные технологии биологических систем автора Уголев Александр Михайлович

5.2. Кишечная клетка Схема кишечной клетки представлена на рис. 26. Известно, что численность кишечных клеток составляет 1010, а соматических клеток взрослого человека- 10 15. Следовательно, одна кишечная клетка обеспечивает питание около 100 000 других клеток. Такая

Из книги Рассказы о биоэнергетике автора Скулачев Владимир Петрович

Как клетка получает и использует энергию Чтобы жить, надо работать. Эта житейская истина вполне приложима к любым живым существам. Все организмы: от одноклеточных микробов до высших животных и человека - непрерывно совершают различные типы работы. Таковы движение, то

Из книги В поисках памяти [Возникновение новой науки о человеческой психике] автора Кандель Эрик Ричард

Зачем клетка обменивает натрий на калий? Мысль о двух формах конвертируемой энергии я высказал в 1975 году. Спустя два года эта точка зрения была поддержана Митчелом. А в группе А. Глаголева тем временем начались опыты по проверке одного из предсказаний этой новой

Из книги Энергия и жизнь автора Печуркин Николай Савельевич

Из книги Лестница жизни [Десять величайших изобретений эволюции] автора Лейн Ник

Из книги Биология. Общая биология. 10 класс. Базовый уровень автора Сивоглазов Владислав Иванович

5.1. Главная ячейка жизни - клетка Определение жизни с позиций функционального подхода (метаболизм, размножение, расселение в пространстве) можно дать в следующей форме [Печуркин, 1982]: это открытая система, развивающаяся на основе матричного автокатализа под влиянием

Из книги Поведение: эволюционный подход автора Курчанов Николай Анатольевич

Глава 4. Сложная клетка Ботаник - это тот, кто умеет давать одинаковые названия одинаковым растениям и разные названия разным, причем так, чтобы в этом мог разобраться каждый”, - писал великий шведский систематик Карл Линней (сам ботаник). Это определение может поразить

Из книги автора

Глава 2. Клетка ТЕМЫ История изучения клетки. Клеточная теория Химический состав клетки Строение эукариотической и прокариотической клеток Реализация наследственной информации в клетке ВирусыУдивительный и загадочный мир окружает нас, жителей планеты,

К прокариотам относятся архебактерии, бактерии и синезеленые водоросли. Прокариоты — одноклеточные организмы, у которых отсутствуют структурно оформленное ядро, мембранные органоиды и митоз.

Размеры — от 1 до 15 мкм. Основные формы: 1) кокки (шаровидные), 2) бациллы (палочковидные), 3) вибрионы (изогнутые в виде запятой), 4) спириллы и спирохеты (спирально закрученные).

1 — кокки; 2 — бациллы; 3 — вибрионы; 4—7 — спириллы и спирохеты.

1 — цитоплазматическая мемб-рана; 2 — клеточ-ная стенка; 3 — слизис-тая кап-сула; 4 — цито-плазма; 5 — хромо-сомная ДНК; 6 — рибосомы; 7 — мезо-сома; 8 — фото-синтети-ческие мемб-раны; 9 — вклю-чения; 10 — жгу-тики; 11 — пили.

Бактериальная клетка ограничена оболочкой. Внутренний слой оболочки представлен цитоплазматической мембраной (1), над которой находится клеточная стенка (2); над клеточной стенкой у многих бактерий — слизистая капсула (3). Строение и функции цитоплазматической мембраны эукариотической и прокариотической клеток не отличаются. Мембрана может образовывать складки, называемые мезосомами (7). Они могут иметь разную форму (мешковидные, трубчатые, пластинчатые и др.).

На поверхности мезосом располагаются ферменты. Клеточная стенка толстая, плотная, жесткая, состоит из муреина (главный компонент) и других органических веществ. Муреин представляет собой правильную сеть из параллельных полисахаридных цепей, сшитых друг с другом короткими белковыми цепочками. В зависимости от особенностей строения клеточной стенки бактерии подразделяются на грамположительные (окрашиваются по Граму) и грамотрицательные (не окрашиваются). У грамотрицательных бактерий стенка тоньше, устроена сложнее и над муреиновым слоем снаружи имеется слой липидов. Внутреннее пространство заполнено цитоплазмой (4).

Генетический материал представлен кольцевыми молекулами ДНК. Эти ДНК можно условно разделить на «хромосомные» и плазмидные. «Хромосомная» ДНК (5) — одна, прикреплена к мембране, содержит несколько тысяч генов, в отличие от хромосомных ДНК эукариот она не линейная, не связана с белками. Зона, в которой расположена эта ДНК, называется нуклеоидом . Плазмиды — внехромосомные генетические элементы. Представляют собой небольшие кольцевые ДНК, не связаны с белками, не прикреплены к мембране, содержат небольшое число генов. Количество плазмид может быть различным. Наиболее изучены плазмиды, несущие информацию об устойчивости к лекарственным препаратам (R-фактор), принимающие участие в половом процессе (F-фактор). Плазмида, способная объединяться с хромосомой, называется эписомой .

В бактериальной клетке отсутствуют все мембранные органоиды, характерные для эукариотической клетки (митохондрии, пластиды, ЭПС, аппарат Гольджи, лизосомы).

В цитоплазме бактерий находятся рибосомы 70S-типа (6) и включения (9). Как правило, рибосомы собраны в полисомы. Каждая рибосома состоит из малой (30S) и большой субъединиц (50S). Функция рибосом: сборка полипептидной цепочки. Включения могут быть представлены глыбками крахмала, гликогена, волютина, липидными каплями.

У многих бактерий имеются жгутики (10) и пили (фимбрии) (11). Жгутики не ограничены мембраной, имеют волнистую форму и состоят из сферических субъединиц белка флагеллина. Эти субъединицы расположены по спирали и образуют полый цилиндр диаметром 10-20 нм. Жгутик прокариот по своей структуре напоминает одну из микротрубочек эукариотического жгутика. Количество и расположение жгутиков может быть различным. Пили — прямые нитевидные структуры на поверхности бактерий. Они тоньше и короче жгутиков. Представляют собой короткие полые цилиндры из белка пилина. Пили служат для прикрепления бактерий к субстрату и друг к другу. Во время конъюгации образуются особые F-пили, по которым осуществляется передача генетического материала от одной бактериальной клетки к другой.

Спорообразование у бактерий — способ переживания неблагоприятных условий. Споры формируются обычно по одной внутри «материнской клетки» и называются эндоспорами. Споры обладают высокой устойчивостью к радиации, экстремальным температурам, высушиванию и другим факторам, вызывающим гибель вегетативных клеток.

Размножение. Бактерии размножаются бесполым способом — делением «материнской клетки» надвое. Перед делением происходит репликация ДНК.

Редко у бактерий наблюдается половой процесс, при котором происходит рекомбинация генетического материала. Следует подчеркнуть, что у бактерий никогда не образуются гаметы, не происходит слияние содержимого клеток, а имеет место передача ДНК от клетки-донора к клетке-реципиенту. Различают три способа передачи ДНК: конъюгация, трансформация, трансдукция.

— однонаправленный перенос F-плазмиды от клетки-донора в клетку-реципиента, контактирующих друг с другом. При этом бактерии соединяются друг с другом особыми F-пилями (F-фимбриями), по каналам которых фрагменты ДНК и переносятся. Конъюгацию можно разбить на следующие этапы: 1) раскручивание F-плазмиды, 2) проникновение одной из цепей F-плазмиды в клетку-реципиента через F-пилю, 3) синтез комплементарной цепи на матрице одноцепочечной ДНК (происходит как в клетке-доноре (F +), так и в клетке-реципиенте (F -)).

Трансформация — однонаправленный перенос фрагментов ДНК от клетки-донора к клетке-реципиенту, не контактирующих друг с другом. При этом клетка-донор или «выделяет» из себя небольшой фрагмент ДНК, или ДНК попадает в окружающую среду после гибели этой клетки. В любом случае ДНК активно поглощается клеткой-реципиентом и встраивается в собственную «хромосому».

Трансдукция — перенос фрагмента ДНК от клетки-донора к клетке-реципиенту с помощью бактериофагов.

Вирусы

Вирусы состоят из нуклеиновой кислоты (ДНК или РНК) и белков, образующих оболочку вокруг этой нуклеиновой кислоты, т.е. представляют собой нуклеопротеидный комплекс. В состав некоторых вирусов входят липиды и углеводы. Вирусы содержат всегда один тип нуклеиновой кислоты — либо ДНК, либо РНК. Причем каждая из нуклеиновых кислот может быть как одноцепочечной, так и двухцепочечной, как линейной, так и кольцевой.

Размеры вирусов — 10-300 нм. Форма вирусов: шаровидная, палочковидная, нитевидная, цилиндрическая и др.

Капсид — оболочка вируса, образована белковыми субъединицами, уложенными определенным образом. Капсид защищает нуклеиновую кислоту вируса от различных воздействий, обеспечивает осаждение вируса на поверхности клетки-хозяина. Суперкапсид характерен для сложноорганизованных вирусов (ВИЧ, вирусы гриппа, герпеса). Возникает во время выхода вируса из клетки-хозяина и представляет собой модифицированный участок ядерной или наружной цитоплазматической мембраны клетки-хозяина.

Если вирус находится внутри клетки-хозяина, то он существует в форме нуклеиновой кислоты. Если вирус находится вне клетки-хозяина, то он представляет собой нуклеопротеидный комплекс, и эта свободная форма существования называется вирионом . Вирусы обладают высокой специфичностью, т.е. они могут использовать для своей жизнедеятельности строго определенный круг хозяев.

В цикле репродукции вируса можно выделить следующие стадии.

  1. Осаждение на поверхности клетки-хозяина.
  2. Проникновение вируса в клетку-хозяина (могут попасть в клетку-хозяина путем: а) «инъекции», б) растворения оболочки клетки вирусными ферментами, в) эндоцитоза; попав внутрь клетки вирус переводит ее белок-синтезирующий аппарат под собственный контроль).
  3. Встраивание вирусной ДНК в ДНК клетки-хозяина (у РНК-содержащих вирусов перед этим происходит обратная транскрипция — синтез ДНК на матрице РНК).
  4. Транскрипция вирусной РНК.
  5. Синтез вирусных белков.
  6. Синтез вирусных нуклеиновых кислот.
  7. Самосборка и выход из клетки дочерних вирусов. Затем клетка либо погибает, либо продолжает существовать и производить новые поколения вирусных частиц.

Вирус иммунодефицита человека поражает главным образом CD 4 -лимфоциты (хелперы), на поверхности которых есть рецепторы, способные связываться с поверхностным белком ВИЧ. Кроме того, ВИЧ проникает в клетки ЦНС, нейроглии, кишечника. Иммунная система организма человека утрачивает свои защитные свойства и оказывается не в состоянии противостоять возбудителям различных инфекций. Средняя продолжительность жизни инфицированного человека составляет 7-10 лет.

Источником заражения служит только человек — носитель вируса иммунодефицита. СПИД передается половым путем, через кровь и ткани, содержащие вирус иммунодефицита, от матери к плоду.

    Перейти к лекции №8 « Ядро. Хромосомы»

    Перейти к лекции №10 « Понятие об обмене веществ. Биосинтез белков»

Прокариоты или доядерные клетки - первые живые организмы на Земле. Несмотря на примитивное строение прокариотической клетки, бактерии, археи и цианобактерии смогли дожить до наших дней.

Компоненты

Прокариоты состоят из трёх компонентов:

  • оболочки;
  • цитоплазмы;
  • генетического материала.

Оболочку прокариот образуют три слоя:

  • плазмалемма - тонкая мембрана, покрывающая цитоплазму;
  • клеточная стенка - жёсткая наружная оболочка, содержащая белок муреин;
  • капсула - защитная структура, состоящая из полисахаридов или белков.

Капсула (слизистый слой, чехол) - необязательный компонент клетки. Образуется для защиты от неблагоприятных условий, например, высыхания или заморозков. Это дополнительный барьер, способный защитить клетку от вирусов (бактериофагов). У некоторых бактерий капсула служит дополнительным источником запаса веществ.

Рис. 1. Оболочка прокариот.

Цитоплазма прокариот - гелеобразное вещество, содержащее:

ТОП-2 статьи которые читают вместе с этой

  • неорганические вещества;
  • белки;
  • полисахариды;
  • метаболиты (продукты метаболизма).

Главной особенностью строения прокариотической клетки является отсутствие ядра. Генетическая информация в виде кольцевой ДНК хранится непосредственно в цитоплазме и образует нехарактерную для эукариотов структуру - нуклеоид.
Помимо нуклеоида в цитоплазме прокариот постоянно находятся:

  • рибосомы - структуры, состоящие из двух субъединиц, которые осуществляют биосинтез белка;
  • мезосома - складка плазмалеммы, осуществляющая репликацию ДНК и клеточное дыхание (аналог митохондрии);
  • органеллы движения - длинные жгутики, состоящие из белка флагеллина, и короткие пили, образованные белком пилином.

В цитоплазме помимо органелл могут находиться запасы веществ - включения:

  • гликоген;
  • крахмал;
  • волютин (метахроматин) - гранулы полифосфорной кислоты;
  • жировые капли;
  • сера.

Плазмиды - непостоянные структуры прокариот. Состоят из небольших отдельных молекул ДНК, которыми бактерии могут обмениваться в ходе горизонтального переноса генов.

Рис. 2. Органоиды доядерной клетки.

Деление

Прокариоты размножаются прямым или бинарным делением - амитозом. К этому процессу клетка никак не подготавливается. Деление начинается с удвоения кольцевой ДНК на мезосоме без образования хромосом.
Процесс условно можно разделить на две стадии:

  • кариокинез - репликация и расхождение ДНК;
  • цитокинез - разделение путём перетяжки всего содержимого клетки.

Каждой дочерней клетке достаётся по одному кольцу ДНК. Однако остальные структуры распределяются неравномерно.

Рис. 3. Деление бактерии.

ДНК бактерий, составляющая нуклеоид, может включать несколько миллионов нуклеотидов. Однако бактерии быстро приспосабливаются к неблагоприятным условиям благодаря постоянному обмену генами, находящимися в коротких ДНК плазмид.

Что мы узнали?

Из урока 10 класса узнали о строении и функциональном назначении органелл прокариотической клетки. К прокариотам относятся бактерии, цианобактерии и археи. Они не имеют ядра, генетическая информация располагается непосредственно в цитоплазме в виде спутанной структуры - нуклеоида. Помимо одной кольцевой ДНК в клетках могут находиться небольшие молекулы ДНК в виде плазмид. Прокариоты размножаются посредством амитоза и способны обмениваться генами.

Тест по теме

Оценка доклада

Средняя оценка: 3.9 . Всего получено оценок: 227.

Строение эукариотической и прокариотической клеток. Эукариотическая клетка. Строение прокариотической клетки. Сравнение прокариотической и эукариотической клеток.

У современных и ископаемых организмов известны два типа клеток: прокариотическая и эукариотическая. Они столь резко различаются по особенностям строения, что это послужило для выделения двух надцарств живого мира - прокариот, т.е. доядерных, и эукариот, т.е. настоящих ядерных организмов. Промежуточные формы между этими крупнейшими таксонами живого пока неизвестны.

Основные признаки и отличия прокариотических и эукариотических клеток (таблица):

Признаки

Прокариоты

Эукариоты

ЯДЕРНАЯ МЕМБРАНА

Отсутствует

Имеется

ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА

Имеется

Имеется

МИТОХОНДРИИ

Отсутствуют

Имеются

ЭПС

Отсутствует

Имеется

РИБОСОМЫ

Имеются

Имеются

ВАКУОЛИ

Отсутствуют

Имеются (особенно характерны для растений)

ЛИЗОСОМЫ

Отсутствуют

Имеются

КЛЕТОЧНАЯ СТЕНКА

Имеется, состоит из сложного гетерополимерного вещества

Отсутствует в животных клетках, в растительных состоит из целлюлозы

КАПСУЛА

Если имеется, то состоит из соединений белка и сахара

Отсутствует

КОМПЛЕКС ГОЛЬДЖИ

Отсутствует

Имеется

ДЕЛЕНИЕ

Простое

Митоз, амитоз, мейоз

Основное отличие прокариотических клеток от эукариотических заключается в том, что их ДНК не организована в хромосомы и не окружена ядерной оболочкой. Эукариотические клетки устроены значительно сложнее. Их ДНК, связанная с белком, организована в хромосомы, которые располагаются в особом образовании, по сути самом крупном органоиде клетки - ядре. Кроме того, внеядерное активное содержимое такой клетки разделено на отдельные отсеки с помощью эндоплазматической сети, образованной элементарной мембраной. Эукариотические клетки обычно крупнее прокариотических. Их размеры варьируют от 10 до 100 мкм, тогда как размеры клеток прокариот (различных бактерий, цианобактерий - сине- зеленых водорослей и некоторых других организмов), как правило, не превышают 10 мкм, часто составляя 2-3 мкм. В эукариотической клетке носители генов - хромосомы - находятся в морфологически оформленном ядре, отграниченном от остальной клетки мембраной. В исключительно тонких, прозрачных препаратах живые хромосомы можно видеть с помощью светового микроскопа. Чаще же их изучают на фиксированных и окрашенных препаратах.

Хромосомы состоят из ДНК, которая находится в комплексе с белками- гистонами, богатыми аминокислотами аргинином и лизином. Гистоны составляют значительную часть массы хромосом.

Эукариотическая клетка имеет разнообразные постоянные внутриклеточные структуры - органоиды (органеллы), отсутствующие в прокариотической клетке.

Прокариотические клетки могут делиться на равные части перетяжкой или почковаться, т.е. образовывать дочернюю клетку меньшего размера, чем материнская, но никогда не делятся путем митоза. Клетки эукариотических организмов, напротив, делятся путем митоза (исключая некоторые очень архаичные группы). Хромосомы при этом "расщепляются" продольно (точнее, каждая нить ДНК воспроизводит около себя свое подобие), и их "половинки" - хроматиды (полноценные копии нити ДНК) расходятся группами к противоположным полюсам клетки. Каждая из образующихся затем клеток получает одинаковый набор хромосом.

Рибосомы прокариотической клетки резко отличаются от рибосом эукариот по величине. Ряд процессов, свойственных цитоплазме многих эукариотических клеток, - фагоцитоз, пиноцитоз и циклоз (вращательное движение цитоплазмы) - у прокариот не обнаружен. Прокариотической клетке в процессе обмена веществ не требуется аскорбиновая кислота, но эукариотические не могут без нее обходиться.

Существенно различаются подвижные формы прокариотических и эукариотических клеток. Прокариоты имеют двигательные приспособления в виде жгутиков или ресничек, состоящих из белка флагеллина. Двигательные приспособления подвижных эукариотических клеток получили название ундулиподиев, закрепляющихся в клетке с помощью особых телец кинетосом. Электронная микроскопия выявила структурное сходство всех ундулиподиев эукариотических организмов и резкие их отличия от жгутиков прокариот

1. Строение эукариотической клетки.

Клетки, образующие ткани животных и растений, значительно различаются по форме, размерам и внутреннему строению. Однако все они обнаруживают сходство в главных чертах процессов жизнедеятельности, обмена веществ, в раздражимости, росте, развитии, способности к изменчивости.
Клетки всех типов содержат два основных компонента, тесно связанных между собой, — цитоплазму и ядро. Ядро отделено от цитоплазмы пористой мембраной и содержит ядерный сок, хроматин и ядрышко. Полужидкая цитоплазма заполняет всю клетку и пронизана многочисленными канальцами. Снаружи она покрыта цитоплазматической мембраной. В ней имеются специализированные структуры-органоиды, присутствующие в клетке постоянно, и временные образования — включения. Мембранные органоиды : наружная цитоплазматическая мембрана (HЦM), эндоплазматическая сеть (ЭПС), аппарат Гольджи, лизосомы, митохондрии и пластиды. В основе строения всех мембранных органоидов лежит биологическая мембрана. Все мембраны имеют принципиально единый план строения и состоят из двойного слоя фосфолипидов, в который с различных сторон ива разную глубину погружены белковые молекулы. Мембраны органоидов отличаются друг от друга лишь наборами входящих в них белков.

Цитоплазматическая мембрана. У всех клеток растений, многоклеточных животных, у простейших и бактерий клеточная мембрана трехслойна: наружный и внутренний слои состоят из молекул белков, средний — из молекул липидов. Она ограничивает цитоплазму от внешней среды, окружает все органоиды клетки и представляет собой универсальную биологическую структуру. В некоторых клетках наружная оболочка образована несколькими мембранами, плотно прилегающими друг к другу. В таких случаях клеточная оболочка становится плотной и упругой и позволяет сохранить форму клетки, как, например, у эвглены и инфузории туфельки. У большинства растительных клеток, помимо мембраны, снаружи имеется еще толстая целлюлозная оболочка — клеточная стенка . Она хорошо различима в обычном световом микроскопе и выполняет опорную функцию за счет жесткого наружного слоя, придающего клеткам четкую форму.
На поверхности клеток мембрана образует удлиненные выросты — микроворсинки, складки, впячивания и выпячивания, что во много раз увеличивает всасывающую или выделительную поверхность. С помощью мембранных выростов клетки соединяются друг с другом в тканях и органах многоклеточных организмов, на складках мембран располагаются разнообразные ферменты, участвующие в обмене веществ. Отграничивая клетку от окружающей среды, мембрана регулирует направление диффузии веществ и одновременно осуществляет активный перенос их внутрь клетки (накопление) или наружу (выделение). За счет этих свойств мембраны концентрация ионов калия, кальция, магния, фосфора в цитоплазме выше, а концентрация натрия и хлора ниже, чем в окружающей среде. Через поры наружной мембраны из внешней среды внутрь клетки проникают ионы, вода и мелкие молекулы других веществ. Проникновение в клетку относительно крупных твердых частиц осуществляется путем фагоцитоза (от греч. "фаго” — пожираю, "питое” — клетка). При этом наружная мембрана в месте контакта с частицей прогибается внутрь клетки, увлекая частицу в глубь цитоплазмы, где она подвергается ферментативному расщеплению. Аналогичным путем в клетку попадают и капли жидких веществ; их поглощение называется пиноцитозом (от греч. "пино” — пью, "цитос” — клетка). Наружная клеточная мембрана выполняет и другие важные биологические функции.
Цитоплазма на 85 % состоит из воды, на 10 % — из белков, остальной объем приходится на долю липидов, углеводов, нуклеиновых кислот и минеральных соединений; все эти вещества образуют коллоидный раствор, близкий по консистенции глицерину. Коллоидное вещество клетки в зависимости от ее физиологического состояния и характера воздействия внешней среды имеет свойства и жидкости, и упругого, более плотного тела. Цитоплазма пронизана каналами различной формы и величины, которые получили название эндоплазматической сети. Их стенки представляют собой мембраны, тесно контактирующие со всеми органоидами клетки и составляющие вместе с ними единую функционально-структурную систему для осуществления обмена веществ и энергии и перемещения веществ внутри клетки.

В стенках канальцев располагаются мельчайшие зернышки—гранулы, называемые рибосомами. Такая сеть канальцев называется гранулярной. Рибосомы могут располагаться на поверхности канальцев разрозненно или образуют комплексы из пяти-семи и более рибосом, называемые полисомами. Другие канальцы гранул не содержат, они составляют гладкую эндоплазматическую сеть. На стенках располагаются ферменты, участвующие в синтезе жиров и углеводов.

Внутренняя полость канальцев заполнена продуктами жизнедеятельности клетки. Внутриклеточные канальцы, образуя сложную ветвящуюся систему, регулируют перемещение и концентрацию веществ, разделяют различные молекулы органических веществ и этапы их, синтеза. На внутренней и внешней поверхности мембран, богатых ферментами, осуществляется синтез белков, жиров и углеводов, которые либо используются в обмене веществ, либо накапливаются в цитоплазме в качестве включений, либо выводятся наружу.

Рибосомы встречаются во всех типах клеток — от бактерий до клеток многоклеточных организмов. Это округлые тельца, состоящие из рибонуклеиновой кислоты (РНК) и белков почти в равном соотношении. В их состав непременно входит магний, присутствие которого поддерживает структуру рибосом. Рибосомы могут быть связаны с мембранами эндоплазматической сети, с наружной клеточной мембраной или свободно лежать в цитоплазме. В них осуществляется синтез белков. Рибосомы кроме цитоплазмы встречаются в ядре клетки. Они образуются в ядрышке и затем поступают в цитоплазму.

Комплекс Гольджи в растительных клетках имеет вид отдельных телец, окруженных мембранами. В животных клетках этот органоид представлен цистернами, канальцами и пузырьками. В мембранные трубки комплекса Гольджи из канальцев эндоплазматической сети поступают продукты секреции клетки, где они химически перестраиваются, уплотняются, а затем переходят в цитоплазму и либо используются самой клеткой, либо выводятся из нее. В цистернах комплекса Гольджи происходит синтез полисахаридов и их объединение с белками, в результате чего образуются гликопротеиды.

Митохондрии — небольшие тельца палочковидной формы, ограниченные двумя мембранами. От внутренней мембраны митохондрии отходят многочисленные складки — кристы, на их стенках располагаются разнообразные ферменты, с помощью которых осуществляется синтез высокоэнергетического вещества — аденозинтрифосфорной кислоты (АТФ). В зависимости от активности клетки и внешних воздействий митохондрии могут перемещаться, изменять свои размеры, форму. В митохондриях найдены рибосомы, фосфолипиды, РНК и ДНК. С присутствием ДНК в митохондриях связывают способность этих органоидов к размножению путем образования перетяжки или почкованием в период деления клетки, а также синтез части митохондриальных белков.

Лизосомы - мелкие овальные образования, ограниченные мембраной и рассеянные по всей цитоплазме. Встречаются во всех клетках животных и растений. Они возникают в расширениях эндоплазматической сети и в комплексе Гольджи, здесь заполняются гидролитическими ферментами, а затем обособляются и поступают в цитоплазму. В обычных" условиях лизосомы переваривают частицы, попадающие в клетку путем фагоцитоза, и органоиды отмирающих клеток. Продукты лизиса выводятся через мембрану лизосомы в цитоплазму, где они включаются в состав новых молекул. При разрыве лизоеомной мембраны ферменты поступают в цитоплазму и переваривают ее содержимое, вызывая гибель клетки.
Пластиды есть только в растительных клетках и встречаются, у большинства зеленых растений. В пластидах синтезируются и накапливаются органические вещества. Различают пластиды трех видов: хлоропласты, хромопласты и лейкопласты.

Хлоропласты — зеленые пластиды, содержащие зеленый пигмент хлорофилл. Они находятся в листьях, молодых стеблях, незрелых плодах. Хлоропласты окружены двойной мембраной. У высших растений внутренняя часть хлоропластов заполнена полужидким веществом, в котором параллельно друг другу уложены пластинки. Парные мембраны пластинок, сливаясь, образуют стопки, содержащие хлорофилл. В каждой стопке хлоропластов высших растений чередуются слои молекул белка и молекул липидов, а между ними располагаются молекулы хлорофилла. Такая слоистая структура обеспечивает максимум свободных поверхностей и облегчает захват и перенос энергии в процессе фотосинтеза.
Хромопласты — пластиды, в которых содержатся растительные пигменты (красный или бурый, желтый, оранжевый). Они сосредоточены в цитоплазме клеток цветков, стеблей, плодов, листьев растений и придают им соответствующую окраску. Хромопласты образуются из лейкопластов или хлоропластов в результате накопления пигментов каротиноидов.

Лейкопласты—бесцветные пластиды, располагающиеся в неокрашенных частях растений: в стеблях, корнях, луковицах и др. В лейкопластах одних клеток накапливаются зерна крахмала, в лейкопластах других клеток — масла, белки.

Все пластиды возникают из своих предшественников — пропластид. В них выявлена ДНК, которая контролирует размножение этих органоидов.

Клеточный центр, или центросома, играет важную роль при делении, клетки и состоит из двух центриолей. Он встречается у всех клеток животных и растений, кроме цветковых, низших грибов и некоторых, простейших. Центриоли в делящихся клетках принимают участие в формировании веретена деления и располагаются на его полюсах. В делящейся клетке первым делится клеточный центр, одновременно образуется ахроматиновое веретено, ориентирующее хромосомы при расхождении их к полюсам. В дочерние клетки отходит по одной центриоле.
У многих растительных и животных клеток имеются органоиды специального назначения : реснички, выполняющие функцию движения (инфузории, клетки дыхательных путей), жгутики (простейшие одноклеточные, мужские половые клетки у животных и растений и др.).

Включения - временные элемеаты, возникающие в клетке на определенной стадии ее жизнедеятельности в результате синтетической функции. Они либо используются, либо выводятся из клетки. Включениями являются также запасные питательные вещества: в растительных клетках—крахмал, капельки жира, белки, эфирные масла, многие органические кислоты, соли органических и неорганических кислот; в животных клетках - гликоген (в клетках печени и мышцах), капли жира (в подкожной клетчатке); Некоторые включения накапливаются в клетках как отбросы — в виде кристаллов, пигментов и др.

Вакуоли — это полости, ограниченные мембраной; хорошо выражены в клетках растений и имеются у простейших. Возникают в разных участках расширений эндоплазматической сети. И постепенно отделяются от нее. Вакуоли поддерживают тургорное давление, в них сосредоточен клеточный или вакуолярный сок, молекулы которого определяют его осмотическую концентрацию. Считается, что первоначальные продукты синтеза - растворимые углеводы, белки, пектины и др. — накапливаются в цистернах эндоплазматической сети. Эти скопления и представляют собой зачатки будущих вакуолей.
Цитоскелет . Одной из отличительных особенностей эукариотической клетки является развитие в ее цитоплазме скелетных образований в виде микротрубочек и пучков белковых волокон. Элементы цитоскелета тесно связаны с наружной цитоплазматической мембраной и ядерной оболочкой, образуют сложные переплетения в цитоплазме. Опорные элемеиты цитоплазмы определяют форму клетки, обеспечивают движение внутриклеточных структур и перемещение всей клетки.

Ядро клетки играет основную роль в ее жизнедеятельности, с его удалением клетка прекращает свои функции и гибнет. В большинстве животных клеток одно ядро, но встречаются и многоядерные клетки (печень и мышцы человека, грибы, инфузории, зеленые водоросли). Эритроциты млекопитающих развиваются из клеток-предшественников, содержащих ядро, но зрелые эритроциты утрачивают его и живут недолго.
Ядро окружено двойной мембраной, пронизанной порами, посредством которых оно тесно связано с каналами эндоплазматической сети и цитоплазмой. Внутри ядра находится хроматин — спирализованные участки хромосом. В период деления клетки они превращаются в палочковидные структуры, хорошо различимые в световой микроскоп. Хромосомы — это сложный комплекс белков с ДНК, называемый нуклеопротеидом.

Функции ядра состоят в регуляции всех жизненных отправлений клетки, которую оно осуществляет при помощи ДНК и РНК-материальных носителей наследственной информации. В ходе подготовки к делению клетки ДНК удваивается, в процессе митоза хромосомы расходятся и передаются дочерним клеткам, обеспечивая преемственность наследственной информации у каждого вида организмов.

Кариоплазма — жидкая фаза ядра, в которой в растворенном виде находятся продукты жизнедеятельности ядерных структур.

Ядрышко — обособленная, наиболее плотная часть ядра.

В состав ядрышка входят сложные белки и РНК, свободные или связанные фосфаты калия, магния, кальция, железа, цинка, а также рибосомы. Ядрышко исчезает перед началом деления клетки и вновь формируется в последней фазе деления.

Таким образом, клетка обладает тонкой и весьма сложной организацией. Обширная сеть цитоплазматических мембран и мембранный принцип строения органоидов позволяют разграничить множество одновременно протекающих в клетке химических реакций. Каждое из внутриклеточных образований имеет свою структуру и специфическую функцию, но только при их взаимодействии возможна гармоничная жизнедеятельность клетки.На основе такого взаимодействия вещества из окружающей среды поступают в клетку, а отработанные продукты выводятся из нее во внешнюю среду — так совершается обмен веществ. Совершенство структурной организации клетки могло возникнуть только в результате длительной биологической эволюции, в процессе которой выполняемые ею функции постепенно усложнялись.
Простейшие одноклеточные формы представляют собой и клетку, и организм со всеми его жизненными проявлениями. В многоклеточных организмах клетки образуют однородные группы — ткани. В свою очередь ткани формируют органы, системы, и их функции определяются общей жизнедеятельностью целостного организма.

2. Прокариотическая клетка.

К прокариотам относят бактерии и сине-зелёные водоросли (цианеи). Наследственный аппарат прокариот представлен одной кольцевой молекулой ДНК, не образующей связей с белками и содержащей по одной копии каждого гена — гаплоидные организмы. В цитоплазме имеется большое количество мелких рибосом; отсутствуют или слабо выражены внутренние мембраны. Ферменты пластического обмена расположены диффузно. Аппарат Гольджи представлен отдельными пузырьками. Ферментные системы энергетического обмена упорядоченно расположены на внутренней поверхности наружной цитоплазматической мембраны. Снаружи клетка окружена толстой клеточной стенкой. Многие прокариоты способны к спорообразованию в неблагоприятных условиях существования; при этом выделяется небольшой участок цитоплазмы содержащий ДНК, и окружается толстой многослойной капсулой. Процессы метаболизма внутри споры практически прекращаются. Попадая в благоприятные условия, спора преобразуется в активную клеточную форму. Размножение прокариот происходит простым делением надвое.

Средняя величина прокариотических клеток 5 мкм. У них нет никаких внутренних мембран, кроме впячиваний плазматической мембраны. Пласты отсутствуют. Вместо клеточного ядра имеется его эквивалент (нуклеоид), лишенный оболочки и состоящий из одной-единственной молекулы ДНК. Кроме того бактерии могут содержать ДНК в форме крошечных плазмид, сходных с внеядерными ДНК эукариот.
В прокариотических клетках, способных к фотосинтезу (сине-зеленые водоросли, зеленые и пурпурные бактерии) имеются различно структурированные крупные впячивания мембраны - тилакоиды, по своей функции соответствующие пластидам эукариот. Эти же тилакоиды или - в бесцветных клетках - более мелкие впячивания мембраны (а иногда даже сама плазматическая мембрана) в функциональном отношении заменяют митохондрии. Другие, сложно дифференцированные впячивания мембраны называют мезасомами; их функция не ясна.
Только некоторые органеллы прокариотической клетки гомологичны соответствующим органеллам эукариот. Для прокариот характерно наличие муреинового мешка - механически прочного элемента клеточной стенки

Сравнительная характеристика клеток растений, животных, бактерий, грибов

При сравнении бактерий с эукариотами можно выделить единственное сходство - наличие клеточной стенки, а вот сходства и различия эукариотических организмов заслуживают более пристального внимания. Следует начать сравнение с компонентов, которые свойственны и растениям, и животным, и грибам. Это ядро, митохондрии, Аппарат (комплекс) Гольджи, эндоплазматический ретикулум (или эндоплазматическая сеть) и лизосомы. Они характерны для всех организмов, имеют сходное строение и выполняют одинаковые функции. Теперь следует акцентировать внимание на различиях. Растительная клетка, в отличие от животной, имеет клеточную стенку, состоящую из целлюлозы. Кроме того, существую органеллы свойственные растительным клеткам - пластиды и вакуоли. Наличие этих компонентов обусловлено необходимостью растений поддерживать форму, при отсутствии скелета. Есть отличия и в особенностях роста. У растений он происходит в основном за счет увеличения размера вакуолей и растяжения клеток, в то время как у животных происходит увеличение объема цитоплазмы, а вакуоль вовсе отсутствует. Пластиды (хлоропласты, лейкопласты, хромопласты) характерны преимущественно для растений, поскольку их основная задача - это обеспечить автотрофный способ питания. У животных в противовес растениям существуют пищеварительные вакуоли, которые обеспечивают гетеротрофный способ питания. Грибы занимают особое положение и для их клеток характерны признаки свойственные и для растений, и для животных. Подобно животным грибам присущ гетеротрофный тип питания, содержащая хитин клеточная оболочка, а основным запасающим веществом является гликоген. В то же время для них, как для растений, характерен неограниченный рост, неспособность к передвижению и питание путем всасывания.

Прокариотические клетки были первыми живыми организмами, появившимися на Земле, они имеют наиболее простое строение. На сегодняшний день к прокариотам (доядерным) относят бактерий и архей, все они одноклеточные организмы (редко образуют колонии). Цианобактерий (они же синезеленые водоросли) относят к бактериям в ранге типа.

Прокариоты - это нетаксономическая группа организмов, объединяющая бактерий и архей по признаку отсутствия у них ядра. Бактерии и археи выделяются в рангах разных надцарств (доменов), они отличаются между собой многими биохимическими процессами и, как считается, имеют разные эволюционные пути. Кроме них, третьим надцарством являются эукариоты.

Клетки прокариотического типа мельче клеток эукариот.

У них нет ядра, настоящих мембранных органелл, клеточного центра. У ряда групп бактерий есть впячивания цитоплазматической мембраны, которые выполняют различные функции за счет локализации на них тех или иных ферментов. У цианобактерий есть фотосинтетические мембраны (везикулы, тилакоиды, хроматофоры), образованные из клеточной мембраны. Они могут сохранять с ней связь, а могут быть и обособленными.

Генетический материал прокариот находится в цитоплазме. Основной его объем сосредоточен в нуклеоиде - кольцевой молекуле ДНК, в одном месте прикрепленной к цитоплазматической мембране. Она не связана с белками гистонами как у эукариот. В прокариотических клетках по-другому регулируется реализация генетической информации. Кроме нуклеоида есть еще плазмиды (мелкие кольцевые молекулы ДНК). Почти вся ДНК транскрибируется (в то время как у эукариот обычно менее половины).

Прокариоты почти всегда гаплоидны. Новые клетки образуются путем бинарного деления, перед этим нуклеоид удваивается. У прокариот нет процессов митоза и мейоза.

Их рибосомы мельче, чем эукариот.

Цитоплазма прокариот почти неподвижна. Не характерно амебоидное движение.

Поступление в прокариотическую клетку веществ осуществляется за счет осмоса.

Есть автотрофы и гетеротрофы. Автотрофный способ питания осуществляется не только путем фотосинтеза, но и за счет хемосинтеза (энергия поступает не от солнечного света, а от химических реакций окисления различных веществ).

Согласно симбиотической гипотезе, в процессе эволюции от внедрившихся в другую клетку определенных групп прокариотических клеток произошли митохондрии и пластиды.

Клетки бактерий отличаются разнообразной формой (палочковидные, округлые, извитые и др.). У них есть сложная клеточная оболочка (состоящая из клеточной стенки, капсулы, слизистого чехла), жгутики и ворсинки.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама