THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Процентом называется одна сотая доля чего-либо. Из определения следует, что что-либо целое принимается за 100 процентов. Обозначается процент значком "%".

Как решать задачи, в которых требуется произвести расчет процентов от числа? Процент от числа можно высчитать как формулой, так и на калькуляторе.

  • Пример задания: Цена корзины яблок - 160 рублей. Цена корзины слив на 20% дороже. На сколько рублей дороже корзина слив?
  • Решение: В этом задании от нас требуется не что иное, как узнать, сколько рублей составляют 20% процентов от числа 160.

Формула вычисления процента:

1 способ

Так как 160 рублей - это 100%, то сначала узнаем, чему будет равен 1%. А затем умножим это число на нужные нам 20%.

  • 160 / 100 * 20 = 1,6 * 20 = 32

Ответ: корзина слив дороже на 32 рубля.

2 способ

Второй способ - видоизмененный вариант первого способа. Умножим число, которое составляет 100% на десятичную дробь. Дробь эта получается при делении того количества процентов, которые надо найти, на 100. В нашем случае:

  • 20% / 100 = 0,2

Умножаем 160 на 0,2 и получаем такой же ответ 32.

3 способ

3 способ - пропорция.

Составим пропорцию вида:

  • х = 20%
  • 160 = 100%

Перемножаем части пропорции крест на крест и получаем уравнение:

  • х = (160 * 20) / 100
  • х = 32

Вычисление процента от числа на калькуляторе

Для того чтобы вычислить 20% от числа 160 на калькуляторе, нужно:

  1. Сначала набрать на экране число 160 - то есть наши 100%
  2. Затем нажать кнопку умножить " * "
  3. умножать будем на количество процентов, которые нужно найти то есть на 20. Нажимаем 20
  4. Теперь жмем клавишу %
  5. На экране должен высветиться ответ: 32

Подробнее об алгоритмах вычисления процентов читайте в статье

Как посчитать процент от суммы , требуется знать во многих случаях (при расчете госпошлины, кредита и т. п.). Мы расскажем,как посчитать проценты от суммы с помощью калькулятора, пропорций и известных соотношений.

Как узнать процент от суммы в общем случае?

После этого есть два варианта:

  1. Если нужно узнать, сколько процентов составляет другая сумма от первоначальной, нужно просто разделить ее на размер 1%, полученный ранее.
  2. Если же нужен размер суммы, которая составляет, скажем, 27,5% от первоначальной, нужно размер 1% умножить на требуемое количество процентов.

Как высчитать процент из суммы с помощью пропорции?

Но можно поступить и иначе. Для этого придется использовать знания о методе пропорций, который проходят в рамках школьного курса математики. Это будет выглядеть так.

Пусть у нас есть А — основная сумма, равная 100%, и В — сумма, соотношение которой с А в процентах нам нужно узнать. Записываем пропорцию:

(Х в данном случае — число процентов).

По правилам расчета пропорций мы получаем следующую формулу:

Х = 100 * В / А

Если же нужно узнать, сколько будет составлять сумма В при уже известном числе процентов от суммы А, формула будет выглядеть по-другому:

В = 100 * Х / А

Теперь остается подставить в формулу известные числа — и можно производить расчет.

Как рассчитать процент от суммы с помощью известных соотношений?

Наконец, можно воспользоваться и более простым способом. Для этого достаточно помнить, что 1% в виде десятичной дроби — это 0,01. Соответственно, 20% — это 0,2; 48% — 0,48; 37,5% — это 0,375 и т. д. Достаточно умножить исходную сумму на соответствующее число — и результат будет означать размер процентов.

Кроме того, иногда можно воспользоваться и простыми дробями. Например, 10% — это 0,1, то есть 1/10 следовательно, узнать, сколько составят 10%, просто: нужно всего лишь разделить исходную сумму на 10.

Другими примерами таких соотношений будут:

  • 12,5% — 1/8, то есть нужно делить на 8;
  • 20% — 1/5, то есть нужно разделить на 5;
  • 25% — 1/4, то есть делим на 4;
  • 50% — 1/2, то есть нужно разделить пополам;
  • 75% — 3/4, то есть нужно разделить на 4 и умножить на 3.

Правда, не все простые дроби удобны для расчета процентов. К примеру, 1/3 близка по размерам к 33%, но не равна точно: 1/3 — это 33,(3)% (то есть дробь с бесконечными тройками после запятой).

Как вычесть процент от суммы без помощи калькулятора

Если же требуется от уже известной суммы отнять неизвестное число, составляющее какое-то количество процентов, можно воспользоваться следующими методами:

  1. Вычислить неизвестное число с помощью одного из приведенных выше способов, после чего отнять его от исходного.
  2. Сразу рассчитать остающуюся сумму. Для этого от 100% отнимаем то число процентов, которое нужно вычесть, и полученный результат переводим из процентов в число любым из описанных выше способов.

Второй пример удобнее, поэтому проиллюстрируем его. Допустим, надо узнать, сколько останется, если от 4779 отнять 16%. Расчет будет таким:

  1. Отнимаем от 100 (общее количество процентов) 16. Получаем 84.
  2. Считаем, сколько составит 84% от 4779. Получаем 4014,36.

Как высчитать (отнять) из суммы процент с калькулятором в руках

Все вышеприведенные вычисления проще делать, используя калькулятор. Он может быть как в виде отдельного устройства, так и в виде специальной программы на компьютере, смартфоне или обычном мобильнике (даже самые старые из ныне используемых устройств обычно имеют эту функцию). С их помощью вопрос, как высчитать процент из суммы, решается очень просто:

  1. Набирается исходная сумма.
  2. Нажимается знак «-».
  3. Вводится число процентов, которое требуется вычесть.
  4. Нажимается знак «%».
  5. Нажимается знак «=».

В итоге на экране высвечивается искомое число.

Как отнять от суммы процент с помощью онлайн-калькулятора

Наконец, сейчас в сети достаточно сайтов, где реализована функция онлайн-калькулятора. В этом случае даже не требуется знания того, как посчитать процент от суммы: все операции пользователя сводятся к вводу в окошки нужных цифр (или передвижению ползунков для их получения), после чего результат сразу высвечивается на экране.

Особенно эта функция удобна тем, кто рассчитывает не просто абстрактный процент, а конкретный размер налогового вычета или сумму госпошлины. Дело в том, что в этом случае вычисления сложнее: требуется не только найти проценты, но и прибавить к ним постоянную часть суммы. Онлайн-калькулятор позволяет избежать подобных добавочных вычислений. Главное — выбрать сайт, пользующийся данными, которые соответствуют действующему закону.

In // 0 Comments

Как найти процент от числа? Общее правило такое. Чтобы найти процентную часть числа, нужно:

1. Число разделить на 100. Почему на 100? Потому что процент — это одна сотая часть числа. И для того, чтобы найти несколько процентов, для начала нужно найти 1 %(процент). Число мы делим на 100 и таким образом мы находим 1%(процент) числа.

2. Получившийся результат умножить на количество процентов. Таким образом мы увидим какую часть от числа мы искали.

Давайте разберем это на конкретных примерах:

1. Вычислить 5% от числа 60. Найдем 1 %, итак число 60 нам нужно разделить на 100 (60: 100= 0,6). Теперь 0,6 нужно умножить на то число, сколько процентов мы ищем. Мы ищем 5%. Просто умножаем 6*5 =30 , в результате нужно отделить запятой один знак, потому что в множителях стоит один знак после запятой, поэтому 0,6*5= 3

2. Вычислить 15% от числа 30. По той же схеме 30:100= 0,3. Теперь 0,3 нужно умножить на то число, сколько процентов мы ищем. Мы ищем 15%. Просто умножаем 3*15 =45, но нам нужно отделить запятой 1 цифру. Поэтому 0,3*15= 4,5

3. Вычислить 75% от числа 150. По той же схеме 150:100= 1,5. Теперь 1,5 нужно умножить на то число, сколько процентов мы ищем. Мы ищем 75%. поэтому Для того что бы умножить эти 2 числа нужно отбросить все запятые и просто умножить 15 *75= 1125. Теперь в результате нужно отделить запятой столько цифр, сколько в обоих множителях в сумме. В обоих множителях у нас одна цифра. То есть только 5 в числе 1,5. Поэтому запятую мы двигаем тоже на одну цифру 1,5*75= 112,5.

Таким способом легче узнать проценты.

От числа - одна из основополагающих тем, которую все проходят в школе на уроках математики. Но это не значит, что все осваивают ее с легкостью. На самом деле же тема проста, главное - знать проверенные методы вычисления целого по части и процентов от целого.

1% - это сотая часть целого, так что, зная эту величину, можно с легкостью вычислить и значение части. Например, 15% от числа 60 можно высчитать следующим образом: принимаем 60 за 100 процентов. Тогда 1% - это 60/100 - 0,6. 15%, таким образом, составят - 0,6*15 = 9. Это первый способ высчитать процент от числа.

Второй способ - составить пропорцию. 15 относится к 100, как икс относится к 60, то есть 15/100=х/60. Решить составленную пропорцию можно двумя способами:

  1. Преобразовать ее в выражение х = 15*60/100. И опять же получается: х = 9.
  2. Сделать другое преобразование, в 2 действия: 100х = 15*60, то есть числа в пропорциях перемножаются крест-накрест. Из этого выражения получаем следующее: 100х = 900. Следовательно, х = 9.

Если нужно выяснить то, какой процент от числа составляет другое число, формула тоже очень проста. Возьмем для примера числа 70 и 13. Пусть 70 - это 100%, а 13 - х. Тогда 13/70 = х/100. Решить эту пропорцию можно уже знакомыми способами.

70х = 13*100; 70х = 1300; Если округлить до второго знака после запятой, получится, что х = 18,57%.

Если известен процент от некоего числа и нужно найти это число, то и эта задачу вполне можно решить.

Например, 16% - это 32. Каково целое число? Опять же составляем пропорцию: 16% относится к 100%, также как 32 к х. 16/100 = 32/х; 16х = 3200; х = 3200/16 = 200.

Если же условие задачи таково, что число А составляет некий процент от числа Б, который надо вычислить, то применяется еще одна очень простая формула. А/Б*100% - это и будет ответ. Например, нужно выяснить, сколько процентов число 87 составляет от числа 329.

Вычисляя результат по формуле, получим 87/329*100% = 26,44%. В случае если формула забудется в самый нужный момент, на помощь снова придут пропорции: 87 относится к 329, как х относится к 100%, то есть 87/329 = х/100. Преобразовав эту пропорцию, получаем 329х = 87*100; 329х = 8700; х = 8700/329 = 26,44%.

Ну и самые простые пропорции практически у всех всегда на слуху и в голове: одна пятая - это 20%, одна десятая - 10%, половина и четверть - 50% и 25% соответственно. Для кого-то удобнее и нагляднее мыслить частями, а кому-то легче оперировать процентами. Большой разницы между одной второй и 50% нет.

С калькулятором и вовсе будет легко и просто, ведь там даже есть специальная кнопка, позволяющая вычислить проценты.

Конечно, все эти задачи - просто закрепление теории. Но вычислить процент от числа может понадобиться и в жизни. На распродажах, чтобы узнать, стоит ли 30% скидка того, чтобы хвататься за вещь, или она составляет мизерную сумму. Можно узнать, какова была цена до скидки, а также перепроверить продавцов - ведь часто они пользуются невнимательностью покупателей и указывают на ценниках крайне привлекательные цифры.

Вычислить процент от числа может понадобиться и при расчете налогов, разумеется, для тех, кто отслеживает такие вещи. Ну и, конечно, с расчетом процентов постоянно сталкиваются бухгалтеры, экономисты, и аналитики. На самом деле, даже домохозяйки постоянно имеют дело с процентами, сами того не замечая.

Словом, тема это несложная, хоть и кажется на первый взгляд весьма непростой. Однако когда придет понимание, задачи, касающиеся от числа и целого по части, покажутся семечками. Нужно всего лишь набить руку и немножко пошевелить мозгами.

В этом коротком видеоуроке мы научимся решать задачи на проценты с помощью специальной формулы, которая так и называется: формула простого процента. Давайте оформим эту формулу в виде теоремы.

Теорема о простом проценте. Предположим, что есть некая исходная величина x , которая затем меняется на k %, и получается новая величина y . Тогда все три числа связаны формулой:

Плюс или минус перед коэффициентом k ставится в зависимости от условия задачи. Если по условию величина x возрастает, то перед k стоит плюс. Если же величина уменьшается, то перед коэффициентом k стоит минус.

Несмотря на кажущуюся мудреность этой формулы, многие задачи с ее помощью решаются очень быстро и красиво. Давайте попробуем.

Задача. Цена на товар была повышена на 10% и составила 2970 рублей. Сколько рублей стоил товар до повышения цены?

Чтобы решить эту задачу с помощью формулы простых процентов, нам необходимы три числа: исходное значение x , проценты k и итоговое значение y . Из всех трех чисел нам известны проценты k = 10 и итоговое значение y = 2970. Обратите внимание: 2970 — это именно итоговая цена, т.е. y . Потому что по условию задачи исходная цена на товар неизвестна (ее как раз требуется найти). Но затем она была повышена, и только тогда составила 2970 рублей.

Итак, нам нужно найти x , т.е. исходное значение. Что ж, подставляем наши числа в формулу и получаем:

Складываем числа в числителе и получаем:

Сокращаем по одному нулю в числителе и знаменателе, а затем умножаем обе части уравнения на 10. Получим:

11x = 29 700

Чтобы найти x из этого простейшего линейного уравнения, нужно разделить обе стороны на 11:

x = 29 700: 11 = 2700

Как видите, это довольно большие числа, поэтому в уме такие вычисления не провести. В случае, если такая задача встретится вам на ЕГЭ, придется делить уголком. При этом все разделилось без остатка, и мы получили значение x :

x = 2700

Именно столько стоил товар до повышения цены. И именно это число нам требовалось найти по условию задачи. Поэтому все: задача решена. Причем решена не «напролом», а с помощью формулы простого процента — быстро, красиво и наглядно.

Разумеется, эту задачу можно было решать по-другому. Например, через пропорции. Или экзотическим методом коэффициентов. Но будет гораздо лучше и надежнее, если у вас на вооружении будет несколько приемов для решения любой задачи на проценты. Так что обязательно попрактикуйтесь в использовании данной формулы.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама