THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Понятие проекции фигуры на плоскость

Для введения понятия угла между прямой и плоскостью вначале необходимо разобраться в таком понятии, как проекция произвольной фигуры на плоскость.

Определение 1

Пусть нам дана произвольная точка $A$. Точка $A_1$ называется проекцией точки $A$ на плоскость $\alpha $, если она является основанием перпендикуляра, проведенного из точки $A$ на плоскость $\alpha $ (рис. 1).

Рисунок 1. Проекция точки на плоскость

Определение 2

Пусть нам дана произвольная фигура $F$. Фигура $F_1$ называется проекцией фигуры $F$ на плоскость $\alpha $, составленная из проекций всех точек фигуры $F$ на плоскость $\alpha $ (рис. 2).

Рисунок 2. Проекция фигуры на плоскость

Теорема 1

Проекция не перпендикулярной плоскости прямой является прямая.

Доказательство.

Пусть нам дана плоскость $\alpha $ и пересекающая ее прямая $d$, не перпендикулярная ей. Выберем на прямой $d$ точку $M$ и проведем её проекцию $H$ на плоскость $\alpha $. Через прямую $(MH)$ проведем плоскость $\beta $. Очевидно, что эта плоскость будет перпендикулярна плоскости $\alpha $. Пусть они пересекаются по прямой $m$. Рассмотрим произвольную точку $M_1$ прямой $d$ и проведем через нее прямую $(M_1H_1$) параллельно прямой $(MH)$ (рис. 3).

Рисунок 3.

Так как плоскость $\beta $ перпендикулярна плоскости $\alpha $, то $M_1H_1$ перпендикулярно прямой $m$, то есть точка $H_1$ - проекция точки $M_1$ на плоскость $\alpha $. В силу произвольности выбора точки $M_1$ все точки прямой $d$ проецируются на прямую $m$.

Рассуждая аналогично. В обратном порядке, будем получать, что каждая точка прямой $m$ является проекцией какой-либо точки прямой $d$.

Значит, прямая $d$ проецируется на прямую $m$.

Теорема доказана.

Понятие угла между прямой и плоскостью

Определение 3

Угол между прямой, пересекающей плоскость и её проекцией на эту плоскость, называется углом между прямой и плоскостью (рис. 4).

Рисунок 4. Угол между прямой и плоскостью

Отметим здесь несколько замечаний.

Замечание 1

Если прямая перпендикулярна к плоскости. То угол между прямой и плоскостью равен $90^\circ$.

Замечание 2

Если прямая параллельна или лежит в плоскости. То угол между прямой и плоскостью равен $0^\circ$.

Примеры задач

Пример 1

Пусть нам дан параллелограмм $ABCD$ и точка $M$, не лежащая в плоскости параллелограмма. Доказать, что треугольники $AMB$ и $MBC$ являются прямоугольными, если точка $B$ -- проекция точки $M$ на плоскость параллелограмма.

Доказательство.

Изобразим условие задачи на рисунке (рис. 5).

Рисунок 5.

Так как точка $B$ -- проекция точки $M$ на плоскость $(ABC)$, то прямая $(MB)$ перпендикулярна плоскости $(ABC)$. По замечанию 1, получаем, что угол между прямой $(MB)$ и плоскостью $(ABC)$ равен $90^\circ$. Следовательно

\[\angle MBC=MBA={90}^0\]

Значит, треугольники $AMB$ и $MBC$ являются прямоугольными.

Пример 2

Дана плоскость $\alpha $. Под углом $\varphi $ к этой плоскости проведен отрезок, начало которого лежит в данной плоскости. Проекция этого отрезка в два раза меньше самого отрезка. Найти величину $\varphi $.

Решение.

Рассмотрим рисунок 6.

Рисунок 6.

По условию, имеем

Так как треугольник $BCD$ прямоугольный, то, по определению косинуса

\ \[\varphi =arccos\frac{1}{2}={60}^0\]

Пусть задана некоторая прямоугольная система координат и прямая. Пустьи две различные плоскости, пересекающиеся по прямой и задаваемые соответственно уравнениямии. Эти два уравнения совместно определяют прямуюв том и только в том случае, когда они не параллельны и не совпадают друг с другом, т. е. нормальные векторы
и
этих плоскостей не коллинеарны.

Определение. Есликоэффициенты уравнений

не пропорциональны, то эти уравнения называются общими уравнениями прямой, определяемой как линия пересечения плоскостей.

Определение. Любой ненулевой вектор, параллельный прямой, называется направляющим вектором этой прямой.

Выведем уравнение прямой , проходящей через данную точку
пространства и имеющей заданный направляющий вектор
.

Пусть точка
 произвольная точка прямой . Эта точка лежит на прямой тогда и только тогда, когда вектор
, имеющий координаты
, коллинеарен направляющему вектору
прямой. Согласно (2.28) условие коллинеарности векторов
иимеет вид

. (3.18)

Уравнения (3.18) называются каноническими уравнениями прямой, проходящей через точку
и имеющей направляющий вектор
.

Если прямая задана общими уравнениями (3.17), то направляющий векторэтой прямой ортогонален нормальным векторам
и
плоскостей, задаваемых уравнениямии. Вектор
по свойству векторного произведения ортогонален каждому из векторови. Согласно определению в качестве направляющего векторапрямойможно взять вектор
, т. е.
.

Для нахождения точки
рассмотрим систему уравнений
. Так как плоскости, определяемые уравнениямии, не параллельны и не совпадают, то не выполняется хотя бы одно из равенств
. Это приводит к тому, что хотя бы один из определителей,
,
отличен от нуля. Для определенности будем считать, что
. Тогда, взяв произвольное значение, получим систему уравнений относительно неизвестныхи:

.

По теореме Крамера эта система имеет единственное решение, определяемое формулами

,
. (3.19)

Если взять
, то прямая, задаваемая уравнениями (3.17), проходит через точку
.

Таким образом, для случая, когда
, канонические уравнения прямой (3.17) имеют вид

.

Аналогично записываются канонические уравнения прямой (3.17) для случая, когда отличен от нуля определитель
или
.

Если прямая проходит через две различные точки
и
, то ее канонические уравнения имеют вид

. (3.20)

Это следует из того, что прямая проходит через точку
и имеет направляющий вектор.

Рассмотрим канонические уравнения (3.18) прямой. Примем каждое из отношений за параметр , т. е.
. Один из знаменателей этих дробей отличен от нуля, а соответствующий числитель может принимать любые значения, поэтому параметрможет принимать любые вещественные значения. Учитывая, что каждое из отношений равно, получимпараметрические уравнения прямой:

,
,
. (3.21)

Пусть плоскость задана общим уравнением, а прямая параметрическими уравнениями
,
,
. Точка
пересечения прямойи плоскостидолжна одновременно принадлежать плоскости и прямой. Это возможно только в том случае, когда параметрудовлетворяет уравнению, т. е.
. Таким образом, точка пересечения прямой и плоскости имеет координаты

,

,

.

П р и м е р 32. Составить параметрические уравнения прямой, проходящей через точки
и
.

Решение. За направляющий вектор прямой возьмем вектор

. Прямая проходит через точку, поэтому по формуле (3.21) искомые уравнения прямой имеют вид
,
,
.

П р и м е р 33. Вершины треугольника
имеют координаты
,
и
соответственно. Составить параметрические уравнения медианы, проведенной из вершины.

Решение. Пусть
 середина стороны
, тогда
,
,
. В качестве направляющего вектора медианы возьмем вектор
. Тогда параметрические уравнения медианы имеют вид
,
,
.

П р и м е р 34. Составить канонические уравнения прямой, проходящей через точку
параллельно прямой
.

Решение. Прямая задана как линия пересечения плоскостей с нормальными векторами
и
. В качестве направляющего вектораэтой прямой возьмем вектор
, т. е.
. Согласно (3.18) искомое уравнение имеет вид
или
.

3.8. Угол между прямыми в пространстве. Угол между прямой и плоскостью

Пусть две прямые ив пространстве заданы своими каноническими уравнениями
и
. Тогда один из угловмежду этими прямыми равен углу между их направляющими векторами
и
. Воспользовавшись формулой (2.22), для определения углаполучим формулу

. (3.22)

Второй угол между этими прямыми равен
и
.

Условие параллельности прямых иравносильно условию коллинеарности векторов
и
и заключается в пропорциональности их координат, т. е. условие параллельности прямых имеет вид

. (3.23)

Если прямые иперпендикулярны, то их направляющие векторы ортогональны, т.е. условие перпендикулярности определяется равенством

. (3.24)

Рассмотрим плоскость , заданную общим уравнением, и прямую, заданную каноническими уравнениями
.

Угол между прямойи плоскостьюявляется дополнительным к углумежду направляющим вектором прямой и нормальным вектором плоскости, т. е.
и
, или

. (3.24)

Условие параллельности прямой и плоскостиэквивалентно условию перпендикулярности направляющего вектора прямой и нормального вектора плоскости, т. е. скалярное произведение этих векторов должно равняться нулю:

Если же прямая перпендикулярна плоскости, то направляющий вектор прямой и нормальный вектор плоскости должны быть коллинеарны. В этом случае координаты векторов пропорциональны, т. е.

. (3.26)

П р и м е р 35. Найти тупой угол между прямыми
,
,
и
,
,
.

Решение. Направляющие векторы этих прямых имеют координаты
и
. Поэтому один уголмежду прямыми определяется соотношением, т. е.
. Поэтому условию задачи удовлетворяет второй угол между прямыми, равный
.

3.9. Расстояние от точки до прямой в пространстве

Пусть
 точка пространства с координатами
, прямая, заданная каноническими уравнениями
. Найдем расстояниеот точки
до прямой.

Приложим направляющий вектор
к точке
. Расстояниеот точки
до прямойявляется высотой параллелограмма, построенного на векторахи
. Найдем площадь параллелограмма, используя векторное произведение:

С другой стороны, . Из равенства правых частей двух последних соотношений следует, что

. (3.27)

3.10. Эллипсоид

Определение. Эллипсоидом называется поверхность второго порядка, которая в некоторой системе координат определяется уравнением

. (3.28)

Уравнение (3.28) называется каноническим уравнением эллипсоида.

Из уравнения (3.28) следует, что координатные плоскости являются плоскостями симметрии эллипсоида, а начало координат  центром симметрии. Числа
называются полуосями эллипсоида и представляют собой длины отрезков от начала координат до пересечения эллипсоида с осями координат. Эллипсоид представляет собой ограниченную поверхность, заключенную в параллелепипеде
,
,
.

Установим геометрический вид эллипсоида. Для этого выясним форму линий пересечения его плоскостями, параллельными координатным осям.

Для определенности рассмотрим линии пересечения эллипсоида с плоскостями
, параллельными плоскости
. Уравнение проекции линии пересечения на плоскость
получается из (3.28), если в нем положить
. Уравнение этой проекции имеет вид

. (3.29)

Если
, то (3.29) является уравнением мнимого эллипса и точек пересечения эллипсоида с плоскостью
нет. Отсюда и следует, что
. Если
, то линия (3.29) вырождается в точки, т. е. плоскости
касаются эллипсоида в точках
и
. Если
, то
и можно ввести обозначения

,
. (3.30)

Тогда уравнение (3.29) принимает вид

, (3.31)

т. е. проекция на плоскость
линии пересечения эллипсоида и плоскости
представляет собой эллипс с полуосями, которые определяются равенствами (3.30). Так как линия пересечения поверхности плоскостями, параллельными координатным, представляет собой проекцию, «поднятую» на высоту, то и сама линия пересечения является эллипсом.

При уменьшении значенияполуосииувеличиваются и достигают своего наибольшего значения при
, т. е. в сечении эллипсоида координатной плоскостью
получается самый большой эллипс с полуосями
и
.

Представление об эллипсоиде можно получить и другим образом. Рассмотрим на плоскости
семейство эллипсов (3.31) с полуосямии, определяемыми соотношениями (3.30) и зависящими от. Каждый такой эллипс является линией уровня, т. е. линией, в каждой точке которой значениеодинаково. «Подняв» каждый такой эллипс на высоту, получим пространственный вид эллипсоида.

Аналогичная картина получается и при пересечении данной поверхности плоскостями, параллельными координатным плоскостям
и
.

Таким образом, эллипсоид представляет собой замкнутую эллиптическую поверхность. В случае
эллипсоид является сферой.

Линия пересечения эллипсоида с любой плоскостью является эллипсом, так как такая линия представляет собой ограниченную линию второго порядка, а единственная ограниченная линия второго порядка  эллипс.

На понятии проекции наклонной основано определение угла между прямой и плоскостью. Определение. Углом между прямой линией и плоскостью называется угол между этой прямой и ее проекцией на данную плоскость.

На рис. 341 изображен угол а между наклонной AM и ее проекцией на плоскость К.

Примечание. Если прямая параллельна плоскости или лежит в ней, то угол ее с плоскостью считается равным нулю. Если она перпендикулярна к плоскости, то угол объявляется прямым (предыдущее определение здесь в буквальном смысле неприменимо!). В остальных случаях подразумевается острый угол между прямой и ее проекцией. Поэтому угол между прямой и плоскостью никогда не превышает прямого. Еще заметим, что здесь вернее говорить о мере угла, а не об угле (действительно, речь идет о мере наклона прямой к плоскости, понятие же угла как плоской фигуры, ограниченной двумя лучами, не имеет сюда прямого отношения).

Убедимся еще в одном свойстве острого угла между прямой линией и плоскостью.

Из всех углов, образованных данной прямой и всевозможными прямыми в плоскости, угол с проекцией данной прямой наименьший.

Доказательство. Обратимся к рис. 342. Пусть а - данная прямая, - ее проекция на плоскость - произвольная другая прямая в плоскости К (мы провели ее для удобства через точку А пересечения прямой а с плоскостью ). Отложим на прямой отрезок т. е. равный основанию наклонной МА, где проекция одной из точек наклонной а.

Тогда в треугольниках две стороны равны: сторона AM общая, равны по построению. Но третья сторона в треугольнике больше третьей стороны в треугольнике (наклонная больше перпендикуляра). Значит, и противолежащий угол в больше соответствующего угла а в (см. п. 217): , что и требовалось доказать.

Угол между прямой и плоскостью - это наименьший из углов между данной прямой и всевозможными прямыми в плоскости.

Справедлива и такая

Теорема. Острый угол между прямой, лежащей в плоскости, и проекцией наклонной на эту плоскость меньше угла между этой прямой и самой наклонной.

Доказательство. Пусть - прямая, лежащая в плоскости (рис. 342), а - наклонная к плоскости, т - ее проекция на плоскость. Будем рассматривать прямую как наклонную к плоскости тогда будет ее проекцией на указанную плоскость и по предыдущему свойству найдем: что и требовалось доказать. По теореме о трех перпендикулярах видно, что в случае, когда прямая в плоскости перпендикулярна к, проекции наклонной (случай не острого, а прямого угла), прямая также перпендикулярна и к самой наклонной; в этом случае оба угла, о которых мы говорим, прямые и потому равны между собой.

Понятие угла между прямой и плоскостью можно ввести для любого взаимного расположения прямой и плоскости.

Если прямая l перпендикулярна плоскости, то угол между l и считается равным 90 .

Если прямая l параллельна плоскости или лежит в этой плоскости, то угол между l и считается равным нулю.

Если прямая l является наклонной к плоскости, то угол между l и это угол " между прямой l и её проекцией p на плоскость (рис. 39 ).

Рис. 39. Угол между прямой и плоскостью

Итак, запомним определение для этого нетривиального случая: если прямая является наклонной, то угол между прямой и плоскостью есть угол между этой прямой

и её проекцией на данную плоскость.

7.1 Примеры решения задач

Разберём три задачи, расположенные по возрастанию сложности. Третья задача уровень C2 на ЕГЭ по математике.

Задача 1. В правильном тетраэдре найдите угол между боковым ребром и плоскостью основания.

Решение. Пусть ABCD правильный тетраэдр с реб-

ром a (рис. 40 ). Найдём угол между AD и плоскостью

Проведём высоту DH. Проекцией прямой AD на

плоскость ABC служит прямая AH. Поэтому искомый

угол " есть угол между прямыми AD и AH.

Отрезок AH есть радиус окружности, описанной

вокруг треугольника ABC:

AH = p

Теперь из прямоугольного треугольника ADH:

Рис. 40. К задаче 1

cos " = AD =p

Ответ: arccos p

Задача 2. В правильной треугольной призме ABCA1 B1 C1 боковое ребро равно стороне основания. Найдите угол между прямой AA1 и плоскостью ABC1 .

Решение. Угол между прямой и плоскостью не изменится при параллельном сдвиге прямой. Поскольку CC1 параллельна AA1 , искомый угол " есть угол между прямой CC1 и плоскостью ABC1 (рис.41 ).

B 1"

Рис. 41. К задаче 2

Пусть M середина AB. Проведём высоту CH в треугольнике CC1 M. Покажем, что CH перпендикуляр к плоскости ABC1 . Для этого нужно предъявить две пересекающиеся прямые этой плоскости, перпендикулярные CH.

Первая прямая очевидна это C1 M. В самом деле, CH ? C1 M по построению.

Вторая прямая это AB. Действительно, проекцией наклонной CH на плоскость ABC служит прямая CM; при этом AB ? CM. Из теоремы о трёх перпендикулярах следует тогда, что AB ? CH.

Итак, CH ? ABC1 . Стало быть, угол между CC1 и ABC1 есть " = \CC1 H. Величину CH найдём из соотношения

C1 M CH = CC1 CM

(обе части этого соотношения равны удвоенной площади треугольника CC1 M). Имеем:

CM = a 2 3 ;

Остаётся найти угол ":

Ответ: arcsin 3 7 .

C1 M =q CC1 2 + CM2 =r

a2 +4

CH = a

CH = ar

sin " = CH =3 : CC1 7

Задача 3. На ребре A1 B1 куба ABCDA1 B1 C1 D1 взята точка K так, что A1 K: KB1 = 3: 1. Найдите угол между прямой AK и плоскостью BC1 D1 .

Решение. Сделав чертёж (рис. 42 , слева), мы понимаем, что нужны дополнительные построения.

K B 1

Рис. 42. К задаче 3

Во-первых, заметим, что прямая AB лежит в плоскости BC1 D1 (поскольку AB k C1 D1 ). Во-вторых, проведём B1 M параллельно AK (рис.42 , справа). Проведём также B1 C, и пусть N есть точка пересечения B1 C и BC1 .

Покажем, что прямая B1 C перпендикулярна плоскости BC1 D1 . В самом деле:

1) B 1 C ? BC1 (как диагонали квадрата);

2) B 1 C ? AB по теореме о трёх перпендикулярах (ведь AB перпендикулярна прямой BC проекции наклонной B1 C на плоскость ABC).

Таким образом, B1 C перпендикулярна двум пересекающимся прямым плоскости BC1 D1 ; следовательно, B1 C ? BC1 D1 . Поэтому проекцией прямой MB

sin " = B 1 N =2 2 :B 1 M 5

Это означает найти угол между этой прямой и ее проекцией на данную плоскость.

Пространственная модель иллюстрирующая задачу представлена на рисунке.

План решения задачи:
1. Из произвольной точки A a опускаем перпендикуляр на плоскость α ;
2. Определим точку встречи этого перпендикуляра с плоскостью α . Точка A α - ортогональная проекция A на плоскость α ;
3. Находим точку пересечения прямой a с плоскостью α . Точка a α - след прямой a на плоскости α ;
4. Проводим (A α a α ) - проекцию прямой a на плоскость α ;
5. Определяем действительную величину ∠Aa α A α , т. е. ∠φ .

Решение задачи найти угол между прямой и плоскостью может быть значительно упрощено, если определять не ∠φ между прямой и плоскостью, а дополняющий до 90° ∠γ . В этом случае отпадает необходимость в определении проекции точки A и проекции прямой a на плоскость α . Зная величину γ , вычисляем по формуле:

$ φ = 90° - γ $

a и плоскостью α , заданной параллельными прямыми m и n .

a α
Вращением вокруг горизонтали заданной точками 5 и 6 определяем натуральную величину ∠γ . Зная величину γ , вычисляем по формуле:

$ φ = 90° - γ $

Определение угла между прямой a и плоскостью α , заданной треугольником BCD.

Из произвольной точки на прямой a опускаем перпендикуляр к плоскости α
Вращением вокруг горизонтали заданной точками 3 и 4 определяем натуральную величину ∠γ . Зная величину γ , вычисляем по формуле.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама