THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Мозг — это самый загадочный и таинственный орган человека. Парадоксально, но наши представления о его работе и то, как она самом деле происходит — вещи диаметрально противоположные. Следующие эксперименты и гипотезы приоткроют завесу над некоторыми тайнами функционирования этого «оплота мышления», взять который ученым не удалось по сей день.

1. Усталость — пик креативности

Работа биологических часов — внутренней системы организма, определяющей ритм его жизнедеятельности — имеет непосредственное влияние на повседневную жизнь человека и его продуктивность в целом. Если вы «жаворонок», то разумней всего выполнять сложную аналитическую работу, требующую серьезных умственных затрат, утром или до полудня. Для полуночников, иными словами — «сов» — это вторая половина дня, плавно переходящая в ночь.

С другой стороны, за более креативную работу, требующую активации правого полушария, ученые советуют приниматься, когда организм чувствует физическую и умственную истощенность, а мозгу уже просто не под силу разобраться в доказательстве тернарной проблемы Гольдбаха. Звучит безумно, но если копнуть немного глубже, то рациональное зерно в данной гипотезе найти все же можно. Так или иначе, это объясняет, почему моменты типа «Эврика!» происходят во время езды в общественном транспорте после длинного рабочего дня или, если верить истории, в ванной. :)

При недостатке сил и энергии фильтровать поток информации, анализировать статистические данные, находить и, что самое главное, запоминать причинно-следственные связи крайне тяжело. Когда речь заходит о творчестве, то перечисленные негативные моменты приобретают положительный окрас, так как этот вид умственной работы предполагает генерирование новых идей и нерациональное мышление. Другими словами, уставшая нервная система при работе над творческими проектами более эффективна.

В одной из статей научно-популярного американского журнала Scientific American говорится о том, почему отвлечение играет важную роль в процессе креативного мышления:

«Способность к отвлечению очень часто является источником нестандартных решений и оригинальных мыслей. В эти моменты человек менее сконцентрирован и может воспринимать более широкий спектр информации. Такая «открытость» позволяет оценивать альтернативные варианты решения проблем под новым углом, способствует принятию и созданию совершенно новых свежих идей».

2. Влияние стресса на размеры мозга

Стресс — это один из наиболее сильных факторов, влияющих на нормальное функционирование головного мозга человека. Недавно ученые Йельского университета (Yale University) доказали, что частые переживания и депрессии в буквальном смысле уменьшают размеры центральной части нервной системы организма.

Головной мозг человека не может синхронизировать процессы принятия решений в отношении двух отдельно взятых проблем. Пытаясь сделать два действия в одно и то же время, мы всего лишь истощаем свои когнитивные способности, переключаясь с одной проблемы на другую.

В случае, если человек сконцентрирован на чем-то одном, основную роль играет префронтальная кора, контролирующая все возбуждающие и угнетающие импульсы.

«Передняя (Anterior part) префронтальная кора головного мозга отвечает за формирование целей и намерений. К примеру, желание “Я хочу съесть тот кусочек торта” в виде возбуждающего импульса проходит по нейронной сети, достигает задней префронтальной коры, и вы уже наслаждаетесь лакомством».

4. Короткий сон повышает умственную активность

Прекрасно известно, какое влияние оказывает здоровый сон. Вопрос в том, какое воздействие имеет дремота? Как выяснилось, короткие «отключки» на протяжении дня не менее положительно сказываются на умственной деятельности.

Улучшение памяти

После окончания эксперимента по запоминанию 40 иллюстрированных карточек одна группа участников на протяжении 40 минут спала, тогда как вторая бодрствовала. В результате последующего тестирования выяснилось, что участники, которым выпал шанс немного вздремнуть, запомнили карточки гораздо лучше:

«В это сложно поверить, но выспавшейся группе удалось возобновить в памяти 85% карточек, тогда как остальные вспомнили всего 55%».

Очевидно, что короткий сон помогает нашему центральному компьютеру «кристаллизировать» воспоминания:

«Исследование показывает, что едва сформировавшиеся в гиппокампе воспоминания очень хрупки и могут быть легко стерты из памяти, особенно если потребуется место для новой информации. Короткий сон, как оказалось, “проталкивает” недавно усвоенные данные к новой коре (неокортекс), месту длительного хранения воспоминаний, защищая их таким образом от уничтожения».

Улучшение процесса обучения

В процессе исследования, проведенного профессорами Калифорнийского университета (The University of California), перед группой студентов было поставлено довольно сложное задание, требующее изучения большого количества новой информации. Через два часа после начала эксперимента половина волонтеров, точно так же, как и в случае с карточками, на протяжении короткого периода времени спала.

В конце дня выспавшиеся участники не только качественнее выполнили задание и лучше усвоили материал, но их «вечерняя» продуктивность значительно превышала показатели, полученные перед началом исследования.

Что происходит во время сна?

Несколько недавних исследований показали, что во время сна активность правого полушария значительно повышается, тогда как левое ведет себя предельно тихо. :)

Такое поведение ему совершенно не свойственно, так как у 95% населения планеты левое полушарие является доминирующим. Андрей Медведев, автор данного исследования, сделал весьма забавное сравнение:

«Пока мы спим, правое полушарие беспрестанно хлопочет по дому».

5. Зрение — главный «козырь» сенсорной системы

Несмотря на то, что зрение является одной из пяти составляющих сенсорной системы, способность воспринимать электромагнитное излучение видимого спектра по своей важности значительно превалирует над остальными:

«Через три дня после изучения какого-либо текстового материала, вы вспомните всего 10% прочитанного. Несколько релевантных изображений способны увеличить эту цифру на 55%.

Иллюстрации гораздо эффективнее текста отчасти потому, что чтение само по собе не приносит ожидаемых результатов. Наш мозг воспринимает слова в виде крошечных изображений. Чтобы вникнуть в смысл одного предложения, необходимо больше времени и энергии, нежели для того, чтобы рассмотреть красочную картинку».

На самом деле то, что мы так сильно полагаемся на свою зрительную систему, имеет несколько негативных моментов. Вот один из них:

«Наш мозг вынужден постоянно строить догадки, так как он не имеет никакого понятия, где конкретно находятся видимые предметы. Человек живет в трехмерном пространстве, тогда как свет на сетчатку его глаза падает в двумерной плоскости. Таким образом, мы додумываем все, что не можем увидеть».

На картинке, представленной ниже, показано, какая часть головного мозга отвечает за обработку визуальной информации, и ее взаимодействие с другими областями мозга.

6. Влияние типа личности

Умственная активность экстравертов значительно повышается, когда «выгорает» рискованная сделка или удается провернуть какую-то авантюру. С одной стороны, это просто генетическая предрасположенность общительных и импульсивных людей, а с другой — разные уровни нейромедиатора дофамина в мозгу разных типов личности.

«Когда стало известно, что рискованная сделка оказалась удачной, повышенная активность прослеживалась в двух областях мозга экстравертов: миндалевидном теле (лат. corpus amygdaloidum) и прилежащем ядре (лат. nucleus accumbens)».

Прилежащее ядро является частью дофаминергической системы, вызывающей чувство удовольствия и влияющей на процессы мотивации и обучения. Дофамин, вырабатываемый в мозгу экстравертов, подталкивает их к совершению безумных поступков и дает возможность полностью насладиться происходящими вокруг событиями. Миндалевидное тело, в свою очередь, играет ключевую роль в формировании эмоций и отвечает за обработку возбуждающих и угнетающих импульсов.

Другие исследования продемонстрировали, что самая большая разница между интровертами и экстравертами заключается в процессах обработки различных стимулов, поступающих в мозг. У экстравертов этот путь гораздо короче — возбуждающие факторы двигаются через области, отвечающие за обработку сенсорной информации. У интровертов траектория движения стимулов гораздо сложнее — они проходят через области, связанные с процессами запоминания, планирования и принятия решений.

7. Эффект «полного провала»

Профессор социальной психологии Стэнфордского университета (Stanford University) Эллиот Аронсон (Elliot Aronson) обосновал существование так называемого эффекта «полного провала» (Pratfall Effect). Его суть состоит в том, что допуская ошибки, мы больше нравимся людям.

«Тот, кто никогда не ошибается, менее симпатичен окружающим, нежели тот, кто временами делает глупости. Совершенство создает дистанцию и невидимую ауру недосягаемости. Именно поэтому в выигрыше всегда тот, у кого есть хоть какие-то изъяны.

Эллиот Аронсон провел замечательный эксперимент, подтверждающий его гипотезу. Группе участников было предложено прослушать две аудиозаписи, сделанные во время собеседований. На одной из них было слышно, как человек опрокидывает чашку кофе. Когда участников опросили, какой из претендентов им симпатизировал больше, все проголосовали за неуклюжего соискателя».

8. Медитация — подзарядка для мозга

Медитация полезна не только для улучшения внимания и сохранения спокойствия в течении дня. Различные психофизические упражнения имеют множество положительных эффектов.

Спокойствие

Чем чаще мы медитируем, тем спокойнее становимся. Это утверждение несколько спорное, но довольно интересное. Как выяснилось, причиной тому является разрушение нервных окончаний мозга. Вот как выглядит префронтальная кора до и после 20-минутной медитации:

Во время медитации нервные связи значительно ослабевают. При этом связи между областями мозга, отвечающими за рассуждения и принятия решений, телесными ощущениями и центром страха, наоборот, укрепляются. Поэтому, переживая стрессовые ситуации, мы можем более рационально их оценивать.

Креативность

Исследователи Лейденского университета в Нидерландах, изучая целенаправленную медитацию и медитацию ясного ума, обнаружили, что у участников эксперимента, практикующих стиль целенаправленной медитации, не наблюдалось особых изменений в областях мозга, регулирующих процесс творческого мышления. Те, кто избрал для себя медитацию ясного ума, намного превзошли остальных участников по результатам последующего тестирования.

Память

Кэтрин Кэрр (Catherine Kerr), доктор философских наук, сотрудник Центра Биомедицинского Сканирования MGH (Martinos Center for Biomedical Imaging) и Исследовательского центра Ошера Гарвардской Медицинской Школы, утверждает, что медитация повышает многие умственные способности, в частности — быстрое запоминание материала. Способность абсолютно абстрагироваться от всех отвлекающих факторов позволяет людям, практикующим медитацию, предельно концентрироваться на выполняемой задаче.

9. Упражнения — реорганизация и воспитание силы воли

Конечно, физические упражнения очень полезны для нашего тела, но как насчет работы мозга? Между тренировками и умственной активностью существует точно такая же связь, как между тренировками и положительными эмоциями.

«Регулярная физическая нагрузка может стать причиной значительного улучшения когнитивных способностей человека. В результате проведенного тестирования выяснилось, что люди, активно занимающиеся спортом, в отличие от домоседов, имеют хорошую память, быстро принимают правильные решения, без особого труда концентрируют внимание на выполнении поставленной задачи и умеют выделять причинно-следственные связи».

Если вы только приступили к занятиям, ваш мозг воспримет это событие не иначе как стресс. Учащенное сердцебиение, одышка, головокружение, судороги, мышечная боль и т. д. — все эти симптомы возникают не только в тренажерных залах, но и в более экстремальных жизненных ситуациях. Если ранее вы ощущали что-то подобное, эти неприятные воспоминания обязательно всплывут в памяти.

Чтобы защититься от стресса, во время тренировки мозг вырабатывает белок BDNF (нейротрофический фактор мозга). Вот почему после занятий спортом мы чувствуем себя непринужденными и в конечном итоге даже счастливыми. Кроме того — как защитная реакция в ответ на стресс — увеличивается выработка эндорфинов:

«Эндорфины минимизируют ощущение дискомфорта во время занятий, блокируют боль и способствуют возникновению чувства эйфории».

10. Новая информация замедляет ход времени

Вы когда-нибудь мечтали о том, чтобы время летело не так быстро? Наверное, неоднократно. Зная, каким образом человек воспринимает время, можно искусственно замедлять его ход.

Поглощая огромное количество информации, поступающей от разных органов чувств, наш мозг структурирует данные таким образом, чтобы мы могли беспрепятственно воспользоваться ими в будущем.

«Так как информация, воспринимаемая мозгом, совершенно неупорядоченная, она должна быть реорганизована и усвоена в понятной для нас форме. Несмотря на то, что процесс обработки данных занимает миллисекунды, новая информация усваивается мозгом немного дольше. Таким образом, человеку кажется, что время тянется вечность».

Более странно то, что за восприятие времени отвечают практически все области нервной системы.

Когда человек получает много информации, мозгу необходимо определенное время на ее обработку, и чем дольше длится этот процесс, тем больше замедляется ход времени.

Когда же мы в который раз работаем над до боли знакомым материалом, все происходит с точностью до наоборот — время пролетает практически незаметно, так как особых умственных усилий прикладывать не приходится.

История компьютерных наук в целом сводится к тому, что учёные пытаются понять, как работает человеческий мозг, и воссоздать нечто аналогичное по своим возможностям. Как именно учёные его исследуют? Представим, что в XXI веке на Землю прилетают инопланетяне, никогда не видевшие привычных нам компьютеров, и пытаются исследовать устройство такого компьютера. Скорее всего, они начнут с измерения напряжений на проводниках, и обнаружат, что данные передаются в двоичном виде: точное значение напряжения не важно, важно только его наличие либо отсутствие. Затем, возможно, они поймут, что все электронные схемы составлены из одинаковых «логических вентилей», у которых есть вход и выход, и сигнал внутри схемы всегда передаётся в одном направлении. Если инопланетяне достаточно сообразительные, то они смогут разобраться, как работают комбинационные схемы - одних их достаточно, чтобы построить сравнительно сложные вычислительные устройства. Может быть, инопланетяне разгадают роль тактового сигнала и обратной связи; но вряд ли они смогут, изучая современный процессор, распознать в нём фон-неймановскую архитектуру с общей памятью, счётчиком команд, набором регистров и т.п. Дело в том, что по итогам сорока лет погони за производительностью в процессорах появилась целая иерархия «памятей» с хитроумными протоколами синхронизации между ними; несколько параллельных конвейеров, снабжённых предсказателями переходов, так что понятие «счётчика команд» фактически теряет смысл; с каждой командой связано собственное содержимое регистров, и т.д. Для реализации микропроцессора достаточно нескольких тысяч транзисторов; чтобы его производительность достигла привычного нам уровня, требуются сотни миллионов. Смысл этого примера в том, что для ответа на вопрос «как работает компьютер?» не нужно разбираться в работе сотен миллионов транзисторов: они лишь заслоняют собой простую идею, лежащую в основе архитектуры наших ЭВМ.

Моделирование нейронов

Кора человеческого мозга состоит из порядка ста миллиардов нейронов. Исторически сложилось так, что учёные, исследующие работу мозга, пытались охватить своей теорией всю эту колоссальную конструкцию. Строение мозга описано иерархически: кора состоит из долей, доли - из «гиперколонок» , те - из «миниколонок» … Миниколонка состоит из примерно сотни отдельных нейронов.

По аналогии с устройством компьютера, абсолютное большинство этих нейронов нужны для скорости и эффективности работы, для устойчивости ко сбоям, и т.п.; но основные принципы устройства мозга так же невозможно обнаружить при помощи микроскопа, как невозможно обнаружить счётчик команд, рассматривая под микроскопом микропроцессор. Поэтому более плодотворный подход - попытаться понять устройство мозга на самом низком уровне, на уровне отдельных нейронов и их колонок; и затем, опираясь на их свойства - попытаться предположить, как мог бы работать мозг целиком. Примерно так пришельцы, поняв работу логических вентилей, могли бы со временем составить из них простейший процессор, - и убедиться, что он эквивалентен по своим способностям настоящим процессорам, даже хотя те намного сложнее и мощнее.

На рисунке, приведённом чуть выше, тело нейрона (слева) - небольшое красное пятнышко в нижней части; всё остальное - дендриты , «входы» нейрона, и один аксон , «выход». Разноцветные точки вдоль дендритов - это синапсы , которыми нейрон соединён с аксонами других нейронов. Работа нейронов описывается очень просто: когда на аксоне возникает «всплеск» напряжения выше порогового уровня (типичная длительность всплеска 1мс, уровень 100мВ), то синапс «пробивается», и всплеск напряжения переходит на дендрит. При этом всплеск «сглаживается»: вначале напряжение за 5..20мс растёт до порядка 1мВ, затем экспоненциально затухает; таким образом, длительность всплеска растягивается до ~50мс.

Если несколько синапсов одного нейрона активизируются с небольшим интервалом по времени, то «разглаженные всплески», возбуждаемые в нейроне каждым из них, складываются. Наконец, если одновременно активны достаточно много синапсов, то напряжение на нейроне поднимается выше порогового уровня, и его собственный аксон «пробивает» синапсы связанных с ним нейронов.

Чем мощнее были исходные всплески, тем быстрее растут разглаженные всплески, и тем меньше будет задержка до активизации следующих нейронов.

Кроме того, бывают «тормозящие нейроны», активация которых понижает общее напряжение на связанных с ним нейронах. Таких тормозящих нейронов 15..25% от общего числа.

У каждого нейрона тысячи синапсов; но в любой момент времени активны не больше десятой части всех синапсов. Время реакции нейрона - единицы мс; такого же порядка задержки на распространение сигнала вдоль дендрита, т.е. эти задержки оказывают существенное влияние на работу нейрона. Наконец, пару соседних нейронов, как правило, связывает не один синапс, а порядка десятка - каждый с собственным расстоянием до тел обоих нейронов, а значит, с собственной длительностью задержки. На иллюстрации справа два нейрона, изображённые красным и синим, связаны шестью синапсами.

У каждого синапса своё «сопротивление», понижающее входящий сигнал (в примере выше - со 100мВ до 1мВ). Это сопротивление динамически подстраивается: если синапс активизировался сразу перед активацией аксона - то, видимо, сигнал с этого синапса хорошо коррелирует с общим выводом, так что сопротивление понижается, и сигнал будет вносить больший вклад в напряжение на нейроне. Если же синапс активизировался сразу после активации аксона - то, видимо, сигнал с этого синапса не имел отношения к активации аксона, так что сопротивление синапса повышается. Если два нейрона связаны несколькими синапсами с разной длительностью задержки, то такая подстройка сопротивлений позволяет выбрать оптимальную задержку, или оптимальную комбинацию задержек: сигнал начинает доходить именно тогда, когда от него больше всего пользы.

Таким образом, модель нейрона, принятая исследователями нейронных сетей - с единственной связью между парой нейронов и с мгновенным распространением сигнала от одного нейрона к другому - весьма далека от биологической картины. Кроме того, традиционные нейронные сети оперируют не временем отдельных всплесков, а их частотой : чем чаще всплески на входах нейрона, тем чаще будут всплески на выходе. Те детали устройства нейрона, которые отброшены в традиционной модели - существенны или несущественны они для описания работы мозга? Нейробиологи накопили огромную массу наблюдений об устройстве и поведении нейронов - но какие из этих наблюдений проливают свет на общую картину, а какие - лишь «детали реализации», и - как и предсказатель переходов в процессоре - не влияют ни на что, кроме эффективности работы? Джеймс считает, что именно временны́е характеристики взаимодействия между нейронами и позволяют приблизиться к пониманию вопроса; что асинхронность так же важна для работы мозга, как синхронность - для работы ЭВМ.

Ещё одна «деталь реализации» - ненадёжность нейрона: с некоторой вероятностью он может активизироваться спонтанно, даже если сумма напряжений на его дендритах не достигает порогового уровня. Благодаря этому, «обучение» колонки нейронов можно начинать с любого достаточно большого сопротивления на всех синапсах: вначале никакая комбинация активаций синапсов не будет приводить к активации аксона; затем спонтанные всплески приведут к тому, что понизится сопротивление синапсов, которые активизировались незадолго до этих спонтанных всплесков. Таким образом нейрон начнёт распознавать конкретные «паттерны» входных всплесков. Что самое важное, паттерны, похожие на те, на которых нейрон обучался, - тоже будут распознаваться, но всплеск на аксоне будет тем слабее и/или позднее, чем меньше нейрон «уверен» в результате. Обучение колонки нейронов получается намного эффективнее, чем обучение обычной нейронной сети: колонке нейронов не нужен контрольный ответ для тех образцов, на которых она обучается - фактически, она не распознаёт , а классифицирует входные паттерны. Кроме того, обучение колонки нейронов локализовано - изменение сопротивления синапса зависит от поведения лишь двух соединённых им нейронов, и никаких других. В результате этого, обучение приводит к изменению сопротивлений вдоль пути следования сигнала, тогда как при обучении нейронной сети веса изменяются в обратном направлении: от нейронов, ближайших к выходу - к нейронам, ближайшим ко входу.

Например, вот колонка нейронов, обученная распознавать паттерн всплесков (8,6,1,6,3,2,5) - значения обозначают время всплеска на каждом из входов. В результате обучения, задержки настроились на точное соответствие распознаваемому паттерну, так что напряжение на аксоне, вызываемое правильным паттерном, получается максимально возможным (7):

Та же самая колонка отреагирует на похожий входной паттерн (8,5,2,6,3,3,4) меньшим всплеском (6), причём напряжение достигает порогового уровня заметно позднее:

Наконец, тормозящие нейроны могут использоваться для реализации «обратной связи»: например, как на иллюстрации справа, - подавлять повторные всплески на выходе, когда вход длительное время остаётся активным; или подавлять всплеск на выходе, если он слишком задерживается по сравнению со входными сигналами, - чтобы сделать классификатор более «категоричным»; или, в нейросхеме для распознавания паттернов, разные колонки-классификаторы могут быть связаны тормозящими нейронами, чтобы активация одного классификатора автоматически подавляла все остальные классификаторы.

Распознавание изображений

Для распознавания рукописных цифер из базы MNIST (28x28 пикселей в оттенках серого) Джеймс из колонок-классификаторов, описанных выше, собрал аналог пятислойной «свёрточной нейросети» . Каждая из 64 колонок в первом слое обрабатывает фрагмент 5х5 пикселей из исходного изображения; такие фрагменты перекрываются. Колонки второго слоя обрабатывают по четыре выхода из первого слоя каждая, что соответствует фрагменту 8х8 пикселей из исходного изображения. В третьем слое всего четыре колонки - каждой соответствует фрагмент из 16х16 пикселей. Четвёртый слой - итоговый классификатор - разбивает все изображения на 16 классов: класс назначается в соответствии с тем, который из нейронов активизируется первым. Наконец, пятый слой - классический перцептрон, соотносящий 16 классов с 10 контрольными ответами.

Классические нейросети достигают на базе MNIST точности 99.5% и даже выше; но по утверждению Джеймса, его «гиперколонка» обучается за гораздо меньшее число итераций, благодаря тому, что изменения распространяются вдоль пути следования сигнала, а значит, затрагивают меньшее число нейронов. Как и для классической нейросети, разработчик «гиперколонки» определяет только конфигурацию соединений между нейронами, а все количественные характеристики гиперколонки - т.е. сопротивление синапсов с разными задержками - приобретаются автоматически в процессе обучения. Кроме того, для работы гиперколонки требуется на порядок меньшее число нейронов, чем для аналогичной по возможностям нейросети. С другой стороны, симуляция таких «аналоговых нейросхем» на электронном компьютере несколько затрудняется тем, что в отличие от цифровых схем, работающих с дискретными сигналами и с дискретными интервалами времени - для работы нейросхем важны непрерывность изменения напряжений и асинхронность нейронов. Джеймс утверждает, что шага симуляции в 0.1мс достаточно для корректной работы его распознавателя; но он не уточнял, сколько «реального времени» занимает обучение и работа классической нейросети, и сколько - обучение и работа его симулятора. Сам он давно на пенсии, и свободное время он посвящает совершенствованию своих аналоговых нейросхем.

История компьютерных наук в целом сводится к тому, что учёные пытаются понять, как работает человеческий мозг, и воссоздать нечто аналогичное по своим возможностям. Как именно учёные его исследуют? Представим, что в XXI веке на Землю прилетают инопланетяне, никогда не видевшие привычных нам компьютеров, и пытаются исследовать устройство такого компьютера. Скорее всего, они начнут с измерения напряжений на проводниках, и обнаружат, что данные передаются в двоичном виде: точное значение напряжения не важно, важно только его наличие либо отсутствие. Затем, возможно, они поймут, что все электронные схемы составлены из одинаковых «логических вентилей», у которых есть вход и выход, и сигнал внутри схемы всегда передаётся в одном направлении. Если инопланетяне достаточно сообразительные, то они смогут разобраться, как работают комбинационные схемы - одних их достаточно, чтобы построить сравнительно сложные вычислительные устройства. Может быть, инопланетяне разгадают роль тактового сигнала и обратной связи; но вряд ли они смогут, изучая современный процессор, распознать в нём фон-неймановскую архитектуру с общей памятью, счётчиком команд, набором регистров и т.п. Дело в том, что по итогам сорока лет погони за производительностью в процессорах появилась целая иерархия «памятей» с хитроумными протоколами синхронизации между ними; несколько параллельных конвейеров, снабжённых предсказателями переходов, так что понятие «счётчика команд» фактически теряет смысл; с каждой командой связано собственное содержимое регистров, и т.д. Для реализации микропроцессора достаточно нескольких тысяч транзисторов; чтобы его производительность достигла привычного нам уровня, требуются сотни миллионов. Смысл этого примера в том, что для ответа на вопрос «как работает компьютер?» не нужно разбираться в работе сотен миллионов транзисторов: они лишь заслоняют собой простую идею, лежащую в основе архитектуры наших ЭВМ.

Моделирование нейронов

Кора человеческого мозга состоит из порядка ста миллиардов нейронов. Исторически сложилось так, что учёные, исследующие работу мозга, пытались охватить своей теорией всю эту колоссальную конструкцию. Строение мозга описано иерархически: кора состоит из долей, доли - из «гиперколонок» , те - из «миниколонок» … Миниколонка состоит из примерно сотни отдельных нейронов.

По аналогии с устройством компьютера, абсолютное большинство этих нейронов нужны для скорости и эффективности работы, для устойчивости ко сбоям, и т.п.; но основные принципы устройства мозга так же невозможно обнаружить при помощи микроскопа, как невозможно обнаружить счётчик команд, рассматривая под микроскопом микропроцессор. Поэтому более плодотворный подход - попытаться понять устройство мозга на самом низком уровне, на уровне отдельных нейронов и их колонок; и затем, опираясь на их свойства - попытаться предположить, как мог бы работать мозг целиком. Примерно так пришельцы, поняв работу логических вентилей, могли бы со временем составить из них простейший процессор, - и убедиться, что он эквивалентен по своим способностям настоящим процессорам, даже хотя те намного сложнее и мощнее.

На рисунке, приведённом чуть выше, тело нейрона (слева) - небольшое красное пятнышко в нижней части; всё остальное - дендриты , «входы» нейрона, и один аксон , «выход». Разноцветные точки вдоль дендритов - это синапсы , которыми нейрон соединён с аксонами других нейронов. Работа нейронов описывается очень просто: когда на аксоне возникает «всплеск» напряжения выше порогового уровня (типичная длительность всплеска 1мс, уровень 100мВ), то синапс «пробивается», и всплеск напряжения переходит на дендрит. При этом всплеск «сглаживается»: вначале напряжение за 5..20мс растёт до порядка 1мВ, затем экспоненциально затухает; таким образом, длительность всплеска растягивается до ~50мс.

Если несколько синапсов одного нейрона активизируются с небольшим интервалом по времени, то «разглаженные всплески», возбуждаемые в нейроне каждым из них, складываются. Наконец, если одновременно активны достаточно много синапсов, то напряжение на нейроне поднимается выше порогового уровня, и его собственный аксон «пробивает» синапсы связанных с ним нейронов.

Чем мощнее были исходные всплески, тем быстрее растут разглаженные всплески, и тем меньше будет задержка до активизации следующих нейронов.

Кроме того, бывают «тормозящие нейроны», активация которых понижает общее напряжение на связанных с ним нейронах. Таких тормозящих нейронов 15..25% от общего числа.

У каждого нейрона тысячи синапсов; но в любой момент времени активны не больше десятой части всех синапсов. Время реакции нейрона - единицы мс; такого же порядка задержки на распространение сигнала вдоль дендрита, т.е. эти задержки оказывают существенное влияние на работу нейрона. Наконец, пару соседних нейронов, как правило, связывает не один синапс, а порядка десятка - каждый с собственным расстоянием до тел обоих нейронов, а значит, с собственной длительностью задержки. На иллюстрации справа два нейрона, изображённые красным и синим, связаны шестью синапсами.

У каждого синапса своё «сопротивление», понижающее входящий сигнал (в примере выше - со 100мВ до 1мВ). Это сопротивление динамически подстраивается: если синапс активизировался сразу перед активацией аксона - то, видимо, сигнал с этого синапса хорошо коррелирует с общим выводом, так что сопротивление понижается, и сигнал будет вносить больший вклад в напряжение на нейроне. Если же синапс активизировался сразу после активации аксона - то, видимо, сигнал с этого синапса не имел отношения к активации аксона, так что сопротивление синапса повышается. Если два нейрона связаны несколькими синапсами с разной длительностью задержки, то такая подстройка сопротивлений позволяет выбрать оптимальную задержку, или оптимальную комбинацию задержек: сигнал начинает доходить именно тогда, когда от него больше всего пользы.

Таким образом, модель нейрона, принятая исследователями нейронных сетей - с единственной связью между парой нейронов и с мгновенным распространением сигнала от одного нейрона к другому - весьма далека от биологической картины. Кроме того, традиционные нейронные сети оперируют не временем отдельных всплесков, а их частотой : чем чаще всплески на входах нейрона, тем чаще будут всплески на выходе. Те детали устройства нейрона, которые отброшены в традиционной модели - существенны или несущественны они для описания работы мозга? Нейробиологи накопили огромную массу наблюдений об устройстве и поведении нейронов - но какие из этих наблюдений проливают свет на общую картину, а какие - лишь «детали реализации», и - как и предсказатель переходов в процессоре - не влияют ни на что, кроме эффективности работы? Джеймс считает, что именно временны́е характеристики взаимодействия между нейронами и позволяют приблизиться к пониманию вопроса; что асинхронность так же важна для работы мозга, как синхронность - для работы ЭВМ.

Ещё одна «деталь реализации» - ненадёжность нейрона: с некоторой вероятностью он может активизироваться спонтанно, даже если сумма напряжений на его дендритах не достигает порогового уровня. Благодаря этому, «обучение» колонки нейронов можно начинать с любого достаточно большого сопротивления на всех синапсах: вначале никакая комбинация активаций синапсов не будет приводить к активации аксона; затем спонтанные всплески приведут к тому, что понизится сопротивление синапсов, которые активизировались незадолго до этих спонтанных всплесков. Таким образом нейрон начнёт распознавать конкретные «паттерны» входных всплесков. Что самое важное, паттерны, похожие на те, на которых нейрон обучался, - тоже будут распознаваться, но всплеск на аксоне будет тем слабее и/или позднее, чем меньше нейрон «уверен» в результате. Обучение колонки нейронов получается намного эффективнее, чем обучение обычной нейронной сети: колонке нейронов не нужен контрольный ответ для тех образцов, на которых она обучается - фактически, она не распознаёт , а классифицирует входные паттерны. Кроме того, обучение колонки нейронов локализовано - изменение сопротивления синапса зависит от поведения лишь двух соединённых им нейронов, и никаких других. В результате этого, обучение приводит к изменению сопротивлений вдоль пути следования сигнала, тогда как при обучении нейронной сети веса изменяются в обратном направлении: от нейронов, ближайших к выходу - к нейронам, ближайшим ко входу.

Например, вот колонка нейронов, обученная распознавать паттерн всплесков (8,6,1,6,3,2,5) - значения обозначают время всплеска на каждом из входов. В результате обучения, задержки настроились на точное соответствие распознаваемому паттерну, так что напряжение на аксоне, вызываемое правильным паттерном, получается максимально возможным (7):

Та же самая колонка отреагирует на похожий входной паттерн (8,5,2,6,3,3,4) меньшим всплеском (6), причём напряжение достигает порогового уровня заметно позднее:

Наконец, тормозящие нейроны могут использоваться для реализации «обратной связи»: например, как на иллюстрации справа, - подавлять повторные всплески на выходе, когда вход длительное время остаётся активным; или подавлять всплеск на выходе, если он слишком задерживается по сравнению со входными сигналами, - чтобы сделать классификатор более «категоричным»; или, в нейросхеме для распознавания паттернов, разные колонки-классификаторы могут быть связаны тормозящими нейронами, чтобы активация одного классификатора автоматически подавляла все остальные классификаторы.

Распознавание изображений

Для распознавания рукописных цифер из базы MNIST (28x28 пикселей в оттенках серого) Джеймс из колонок-классификаторов, описанных выше, собрал аналог пятислойной «свёрточной нейросети» . Каждая из 64 колонок в первом слое обрабатывает фрагмент 5х5 пикселей из исходного изображения; такие фрагменты перекрываются. Колонки второго слоя обрабатывают по четыре выхода из первого слоя каждая, что соответствует фрагменту 8х8 пикселей из исходного изображения. В третьем слое всего четыре колонки - каждой соответствует фрагмент из 16х16 пикселей. Четвёртый слой - итоговый классификатор - разбивает все изображения на 16 классов: класс назначается в соответствии с тем, который из нейронов активизируется первым. Наконец, пятый слой - классический перцептрон, соотносящий 16 классов с 10 контрольными ответами.

Классические нейросети достигают на базе MNIST точности 99.5% и даже выше; но по утверждению Джеймса, его «гиперколонка» обучается за гораздо меньшее число итераций, благодаря тому, что изменения распространяются вдоль пути следования сигнала, а значит, затрагивают меньшее число нейронов. Как и для классической нейросети, разработчик «гиперколонки» определяет только конфигурацию соединений между нейронами, а все количественные характеристики гиперколонки - т.е. сопротивление синапсов с разными задержками - приобретаются автоматически в процессе обучения. Кроме того, для работы гиперколонки требуется на порядок меньшее число нейронов, чем для аналогичной по возможностям нейросети. С другой стороны, симуляция таких «аналоговых нейросхем» на электронном компьютере несколько затрудняется тем, что в отличие от цифровых схем, работающих с дискретными сигналами и с дискретными интервалами времени - для работы нейросхем важны непрерывность изменения напряжений и асинхронность нейронов. Джеймс утверждает, что шага симуляции в 0.1мс достаточно для корректной работы его распознавателя; но он не уточнял, сколько «реального времени» занимает обучение и работа классической нейросети, и сколько - обучение и работа его симулятора. Сам он давно на пенсии, и свободное время он посвящает совершенствованию своих аналоговых нейросхем.

Шошина Вера Николаевна

Терапевт, образование: Северный медицинский университет. Стаж работы 10 лет.

Написано статей

О том, как работает важнейший орган человеческого тела, головной мозг, существует множество легенд и псевдонаучных теорий. Самое частое утверждение гласит: по проведенным исследованиям он тратит не более десяти процентов потенциала. Правда ли это? На сколько процентов работает человеческий мозг на самом деле?

Как работает мозг человека

Мозг - наиболее сложный орган у всех живых существ. Каждое мгновенье ему нужно обработать огромное количество информации, передать сигналы другим системам организма. Ученым до настоящего времени не удалось полностью изучить его структуру и функциональные особенности. У человека орган отвечает за такие процессы, как: , сознание, речевые функции, координация, эмоции, рефлекторные функции.

Центральная нервная система нормального человека состоит из спинного и головного мозга. В состав этих органов входят 2 разновидности клеток: нейроны (носители информации) и глиоциты (клетки, выступающие в качестве каркаса).

Все тело человека пронизано сетью нервов, являющихся продолжением ЦНС. Через нейроны информация от мозга расходится по всему организму и поступает обратно для обработки. Все нервные клетки создают с ним единую информационную сеть.

Миф об использовании 10% мозга

Нет достоверных данных, откуда появилась теория «Десяти процентов», предположительно все произошло так:

  1. На стыке 19 и 20 веков двое исследователей Сидис и Джеймс изучали способности детей, проверяя теорию ускоренного развития человека, и пришли к выводу, что человеческий мозг имеет огромный потенциал, который не используется полностью. Позже Томас, другой знаменитый ученый, при написании предисловия к труду Карнеги, вспомнил эту теорию и предположил, что мозг человека на самом деле работает только на десять процентов своего потенциала.
  2. Группа научных работников, проводя исследования по нейробиологии, изучая и кору его полушарий, вывели заключение, что в каждую секунду он задействован на десять процентов. Позже на вопрос, сколько же процентов мозга работает у человека, в книгах и телевизионных передачах начали приводить усеченный ответ.

Так расхожий миф превратился в реальность. Легенда о том, что среднестатистический человек использует только десятую часть своего потенциала, приобрела большую популярность. Она постоянно муссируется в художественной литературе и кино, на ее основе создано множество книг и фильмов.

Нечистоплотные психотерапевты и различного рода экстрасенсы хорошо наживаются на существующем мифе, предлагая программы тренингов, проводя дорогостоящие курсы, где человеку:

  • обещают тренировать мозг до достижения стопроцентного раскрытия потенциала;
  • гарантируют, что каждый умный ребенок станет гением, при использовании предложенных методик;
  • предлагают найти и раскрыть скрытые паранормальные способности, якобы дремлющие в каждом человеке.

Что на самом деле

А как же в действительности, насколько работает мозг и как проверить, применяет ли человек свой потенциал полностью?

Аргументация, свидетельствующая о полном использовании мозга:

  • Не стоит опираться на умозаключения ученых, сделанные в конце девятнадцатого века. В те времена просто не существовало технической возможности для подсчета в процентном соотношении количества нейронов, задействованных в работе.
  • Многолетние эксперименты, тесты и исследования показали, что при выполнении простого действия (общение, чтение и другое) активизируются все участки органа. Следовательно, он работает не на 10, а на 100 процентов.
  • Тяжелая часто приводит к серьезным нарушениям в работе организма, потере многих функций. При использовании десятой части деятельности мозга человек не заметил бы разницы, орган мог бы компенсировать травму и задействовать остальной потенциал.
  • Природа экономна, ведь на мозговые процессы, протекающие в организме человека, затрачивается около двадцати процентов энергии. Вряд ли на орган, который используется частично, тратилось бы столько энергии.
  • Величина мозга также свидетельствует о том, что он использует куда больший процент вещества. Все органы человеческого тела прямо пропорциональны функциям. Мозг, который использует только десятую часть потенциала, весил бы столько же, сколько он весит у овечки.
  • Ускорение мыслительных процессов в мозгу происходит в том случае, если применяются правильные методики обучения и упорный труд, а не произошла активация неработающих участков с помощью дорогостоящих курсов.

Мистические способности

Человек в критической ситуации может почувствовать в себе просто мистические способности для решения проблемы. Известны случаи, когда люди в момент опасности поднимали огромные тяжести, принимали нужные решения за краткие доли секунды, увеличивали скорость восприятия информации.

Что же происходит в таких случаях: мобилизация организма и выброс в кровь адреналина или пробуждение остальной части органа? Достоверно известно, что, пережив экстремальную ситуацию, человек чувствует сильнейшую усталость, ведь организм затратил большое количество энергии на действия. Следовательно, дело не в мистических способностях, которые дремлют в мозгу, а в мобилизации органа для решения важной задачи.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама