THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Однако в то время эта идея осталась невостребованной. Полимеразная цепная реакция была вновь открыта в 1983 году Кэри Маллисом. Его целью было создание метода, который бы позволил амплифицировать ДНК в ходе многократных последовательных удвоений исходной молекулы ДНК с помощью фермента ДНК-полимеразы . Через 7 лет после опубликования этой идеи, в 1993 г., Маллис получил за неё Нобелевскую премию .

В начале использования метода после каждого цикла нагревания - охлаждения приходилось добавлять в реакционную смесь ДНК-полимеразу , так как она быстро инактивировалась при высокой температуре, необходимой для разделения цепей спирали ДНК. Процедура была очень неэффективной, требовала много времени и фермента. В 1986 г. она была существенно улучшена. Было предложено использовать ДНК-полимеразы из термофильных бактерий . Эти ферменты оказались термостабильными и были способны выдерживать множество циклов реакции. Их использование позволило упростить и автоматизировать проведение ПЦР. Одна из первых термостабильных ДНК-полимераз была выделена из бактерий Thermus aquaticus и названа Taq -полимеразой. Недостаток этой полимеразы заключается в том, что вероятность внесения ошибочного нуклеотида у неё достаточно высока, так как у этого фермента отсутствуют механизмы исправления ошибок (3"→5" экзонуклеазная активность). Полимеразы Pfu и Pwo , выделенные из архей , обладают таким механизмом, их использование значительно уменьшает число мутаций в ДНК, но скорость их работы (процессивность) ниже, чем у Taq . Сейчас применяют смеси Taq и Pfu , чтобы добиться одновременно высокой скорости полимеризации и высокой точности копирования.

В момент изобретения метода Маллис работал в компании Цетус (en:Cetus Corporation), которая и запатентовала метод ПЦР. В 1992 году Цетус продала права на метод и патент на использование Taq -полимеразы компании Хофман-Ла Рош (en:Hoffmann-La Roche) за 300 млн долларов. Однако оказалось, что Taq -полимераза была охарактеризована русским биохимиком Алексеем Калединым в 1980 году , в связи с чем компания Промега (Promega) пыталась в судебном порядке заставить Рош отказаться от исключительных прав на этот фермент . Американский патент на метод ПЦР истёк в марте 2005 г.

Проведение ПЦР

Метод основан на многократном избирательном копировании определённого участка ДНК при помощи ферментов в искусственных условиях (in vitro ). При этом происходит копирование только того участка, который удовлетворяет заданным условиям, и только в том случае, если он присутствует в исследуемом образце. В отличие от амплификации ДНК в живых организмах, (репликации), с помощью ПЦР амплифицируются относительно короткие участки ДНК . В обычном ПЦР-процессе длина копируемых ДНК-участков составляет не более 3000 пар оснований (3 kbp ). С помощью смеси различных полимераз, с использованием добавок и при определённых условиях длина ПЦР-фрагмента может достигать 20-40 тысяч пар нуклеотидов. Это всё равно значительно меньше длины хромосомной ДНК эукариотической клетки. Например, геном человека состоит примерно из 3 млрд пар оснований .

Компоненты реакции

Для проведения ПЦР в простейшем случае требуются следующие компоненты:

  • ДНК-матрица , содержащая тот участок ДНК, который требуется амплифицировать .
  • Два праймера , комплементарные противоположным концам разных цепей требуемого фрагмента ДНК.
  • Термостабильная ДНК-полимераза - фермент , который катализирует реакцию полимеризации ДНК. Полимераза для использования в ПЦР должна сохранять активность при высокой температуре длительное время, поэтому используют ферменты, выделенные из термофилов - Thermus aquaticus (Taq-полимераза), Pyrococcus furiosus (Pfu-полимераза), Pyrococcus woesei (Pwo-полимераза) и другие.
  • Дезоксинуклеозидтрифосфаты (dATP, dGTP, dCTP, dTTP).
  • Ионы Mg 2+ , необходимые для работы полимеразы.
  • Буферный раствор , обеспечивающий необходимые условия реакции - рН , ионную силу раствора . Содержит соли, бычий сывороточный альбумин.

Чтобы избежать испарения реакционной смеси, в пробирку добавляют высококипящее масло, например, вазелиновое. Если используется амплификатор с подогревающейся крышкой, этого делать не требуется.

Добавление пирофосфатазы может увеличить выход ПЦР-реакции. Этот фермент катализирует гидролиз пирофосфата , побочного продукта присоединения нуклеотидтрифосфатов к растущей цепи ДНК, до ортофосфата . Пирофосфат может ингибировать ПЦР-реакцию .

Праймеры

Специфичность ПЦР основана на образовании комплементарных комплексов между матрицей и праймерами , короткими синтетическими олигонуклеотидами длиной 18-30 оснований. Каждый из праймеров комплементарен одной из цепей двуцепочечной матрицы и ограничивает начало и конец амплифицируемого участка.

После гибридизации матрицы с праймером (отжиг ), последний служит затравкой для ДНК-полимеразы при синтезе комплементарной цепи матрицы (см. ).

Важнейшая характеристика праймеров - температура плавления (T m) комплекса праймер-матрица. T m это температура, при которой половина ДНК-матриц образует комплекс с олигонуклеотидным праймером. Температуру плавления можно приблизительно определить по формуле , где n X - количество нуклеотидов Х в праймере. В случае неверного выбора длины и нуклеотидного состава праймера или температуры отжига возможно образование частично комплементарных комплексов с другими участками матричной ДНК, что может привести к появлению неспецифических продуктов. Верхний предел температуры плавления ограничен оптимумом температуры действия полимеразы, активность которой падает при температурах выше 80 °C.

При выборе праймеров желательно придерживаться следующих критериев:

Амплификатор

Рис. 1 : Амплификатор для проведения ПЦР

ПЦР проводят в амплификаторе - приборе, обеспечивающем периодическое охлаждение и нагревание пробирок, обычно с точностью не менее 0,1 °C. Современные амплификаторы позволяют задавать сложные программы, в том числе с возможностью «горячего старта», Touchdown ПЦР (см. ниже) и последующего хранения амплифицированных молекул при 4 °C. Для ПЦР в реальном времени выпускают приборы, оборудованные флуоресцентным детектором. Существуют также приборы с автоматической крышкой и отделением для микропланшет, что позволяет встраивать их в автоматизированные системы.

Ход реакции

Фотография геля, содержащего маркерную ДНК (1) и продукты ПЦР-реакции (2,3). Цифрами показана длина фрагментов ДНК в парах нуклеотидов

Обычно при проведении ПЦР выполняется 20-35 циклов, каждый из которых состоит из трех стадий (рис. 2).

Денатурация

Двухцепочечную ДНК-матрицу нагревают до 94-96°C (или до 98 °C, если используется особенно термостабильная полимераза) на 0,5-2 мин., чтобы цепи ДНК разошлись. Эта стадия называется денатурацией , так как разрушаются водородные связи между двумя цепями ДНК. Иногда перед первым циклом (до добавления полимеразы) проводят предварительный прогрев реакционной смеси в течение 2-5 мин. для полной денатурации матрицы и праймеров. Такой приём называется горячим стартом , он позволяет снизить количество неспецифичных продуктов реакции.

Отжиг

Когда цепи разошлись, температуру понижают, чтобы праймеры могли связаться с одноцепочечной матрицей. Эта стадия называется отжигом . Температура отжига зависит от состава праймеров и обычно выбирается на 4-5°С ниже их температуры плавления. Время стадии - 0,5-2 мин. Неправильный выбор температуры отжига приводит либо к плохому связыванию праймеров с матрицей (при завышенной температуре), либо к связыванию в неверном месте и появлению неспецифических продуктов (при заниженной температуре).

Элонгация

Разновидности ПЦР

  • «Вложенная» ПЦР (Nested PCR(англ.) ) - применяется для уменьшения числа побочных продуктов реакции. Используют две пары праймеров и проводят две последовательные реакции. Вторая пара праймеров амплифицирует участок ДНК внутри продукта первой реакции.
  • «Инвертированная» ПЦР (Inverse PCR(англ.) ) - используется в том случае, если известен лишь небольшой участок внутри нужной последовательности. Этот метод особенно полезен, когда нужно определить соседние последовательности после вставки ДНК в геном. Для осуществления инвертированной ПЦР проводят ряд разрезаний ДНК рестриктазами с последующим соединением фрагментов (лигирование). В результате известные фрагменты оказываются на обоих концах неизвестного участка, после чего можно проводить ПЦР как обычно.
  • ПЦР с обратной транскрипцией (Reverse Transcription PCR, RT-PCR (англ.) ) - используется для амплификации, выделения или идентификации известной последовательности из библиотеки РНК. Перед обычной ПЦР проводят на матрице мРНК синтез одноцепочечной молекулы ДНК с помощью ревертазы и получают одноцепочечную кДНК , которая используется в качестве матрицы для ПЦР. Этим методом часто определяют, где и когда экспрессируются данные гены.
  • Асимметричная ПЦР (англ. Asymmetric PCR ) - проводится тогда, когда нужно амплифицировать преимущественно одну из цепей исходной ДНК. Используется в некоторых методиках секвенирования и гибридизационного анализа. ПЦР проводится как обычно, за исключением того, что один из праймеров берется в большом избытке.
  • Количественная ПЦР (Quantitative PCR, Q-PCR(англ.) ) - используется для быстрого измерения количества определенной ДНК, кДНК или РНК в пробе.
  • Количественная ПЦР в реальном времени (Quantitative real-time PCR) - в этом методе используют флуоресцентно меченые реагенты для точного измерения количества продукта реакции по мере его накопления.
  • Touchdown (Stepdown) ПЦР (Touchdown PCR(англ.) ) - с помощью этого метода уменьшают влияние неспецифического связывания праймеров на образование продукта. Первые циклы проводят при температуре выше температуры отжига, затем каждые несколько циклов температуру снижают. При определённой температуре система пройдёт через полосу оптимальной специфичности праймеров к ДНК.
  • Метод молекулярных колоний (ПЦР в геле, англ. Polony - PCR Colony ) - акриламидный гель полимеризуют со всеми компонентами ПЦР на поверхности и проводят ПЦР. В точках, содержащих анализируемую ДНК, происходит амплификация с образованием молекулярных колоний.
  • ПЦР с быстрой амплификацией концов кДНК (англ. Rapid amplification of cDNA ends, RACE-PCR )
  • ПЦР длинных фрагментов (англ. Long-range PCR ) - модификация ПЦР для амплификации протяженных участков ДНК (10 тысяч оснований и больше). Используют две полимеразы, одна из которых - Taq-полимераза с высокой процессивностью (то есть, способная за один проход синтезировать длинную цепь ДНК), а вторая - ДНК полимераза с 3"-5" эндонуклеазной активностью. Вторая полимераза необходима для того, чтобы корректировать ошибки, внесенные первой.
  • RAPD PCR (англ. Random Amplification of Polymorphic DNA PCR , ПЦР со случайной амплификацией полиморфной ДНК - используется тогда, когда нужно различить близкие по генетической последовательности организмы, например, разные сорта культурных растений, породы собак или близкородственные микроорганизмы. В этом методе обычно используют один праймер небольшого размера (20 - 25 п.н.). Этот праймер будет частично комплементарен случайным участкам ДНК исследуемых организмов. Подбирая условия (длину праймера, его состав, температуру и пр.), удается добиться удовлетворительного отличия картины ПЦР для двух организмов.

Если нуклеотидная последовательность матрицы известна частично или неизвестна вовсе, можно использовать вырожденные праймеры , последовательность которых содержит вырожденные позиции, в которых могут располагаться любые основания. Например, последовательность праймера может быть такой: …ATH… , где Н - А, Т или С.

Применение ПЦР

ПЦР используется во многих областях для проведения анализов и в научных экспериментах.

Криминалистика

ПЦР используют для сравнения так называемых «генетических отпечатков пальцев». Необходим образец генетического материала с места преступления - кровь, слюна, сперма, волосы и т. п. Его сравнивают с генетическим материалом подозреваемого. Достаточно совсем малого количества ДНК, теоретически - одной копии. ДНК расщепляют на фрагменты, затем амплифицируют с помощью ПЦР. Фрагменты разделяют с помощью ДНК электрофореза . Полученную картину расположения полос ДНК и называют генетическим отпечатком пальцев (англ. genetic fingerprint ).

Установление отцовства

Рис. 3 : Результаты электрофореза ДНК-фрагментов, амплифицированных с помощью ПЦР. (1) Отец. (2) Ребенок. (3) Мать. Ребенок унаследовал некоторые особенности генетического отпечатка обоих родителей, что дало новый, уникальный отпечаток.

Хотя «генетические отпечатки пальцев» уникальны (за исключением случая однояйцевых близнецов), родственные связи все же можно установить, сделав несколько таких отпечатков (рис. 3). Тот же метод можно применить, слегка модифицировав его, для установления эволюционного родства среди организмов.

Медицинская диагностика

ПЦР дает возможность существенно ускорить и облегчить диагностику наследственных и вирусных заболеваний. Нужный ген амплифицируют с помощью ПЦР с использованием соответствующих праймеров, а затем секвенируют для определения мутаций . Вирусные инфекции можно обнаруживать сразу после заражения, за недели или месяцы до того, как проявятся симптомы заболевания.

Персонализированная медицина

Известно, что большинство лекарств действуют не на всех пациентов, для которых они предназначены, а лишь на 30-70 % их числа. Кроме того, многие лекарства оказываются токсичными или аллергенными для части пациентов. Причины этого - отчасти в индивидуальных различиях в восприимчивости и метаболизме лекарств и их производных. Эти различия детерминируются на генетическом уровне. Например, у одного пациента определенный цитохром (белок печени, отвечающий за метаболизм чужеродных веществ) может быть более активен, у другого - менее. Для того, чтобы определить, какой разновидностью цитохрома обладает данный пациент, предложено проводить ПЦР-анализ перед применением лекарства. Такой анализ называют предварительным генотипированием (англ. prospective genotyping ).

Клонирование генов

Клонирование генов (не путать с клонированием организмов) - это процесс выделения генов и, в результате генноинженерных манипуляций , получения большого количества продукта данного гена. ПЦР используется для того, чтобы амплифицировать ген, который затем вставляется в вектор - фрагмент ДНК, переносящий чужеродный ген в тот же самый или другой, удобный для выращивания, организм. В качестве векторов используют, например, плазмиды или вирусную ДНК. Вставку генов в чужеродный организм обычно используют для получения продукта этого гена - РНК или, чаще всего, белка. Таким образом в промышленных количествах получают многие белки для использования в сельском хозяйстве, медицине и др.

Рис. 4 : Клонирование гена с использованием плазмиды. .
(1) Хромосомная ДНК организма A. (2) ПЦР. (3) Множество копий гена организма А. (4) Вставка гена в плазмиду. (5) Плазмида с геном организма А. (6) Введение плазмиды в организм В. (7) Умножение количества копий гена организма А в организме В.

Секвенирование ДНК

В методе секвенирования с использованием меченых флуоресцентной меткой или радиоактивным изотопом дидезоксинуклеотидов ПЦР является неотъемлемой частью, так как именно в ходе полимеризации в цепь ДНК встраиваются производные нуклеотидов, меченые флуоресцентной или радиоактивной меткой. Это останавливает реакцию, позволяя определить положения специфических нуклеотидов после разделения синтезированных цепочек в геле.

Мутагенез

В настоящее время ПЦР стала основным методом проведения мутагенеза. Использование ПЦР позволило упростить и ускорить процедуру проведения мутагенеза, а также сделать её более надёжной и воспроизводимой.


ПРИНЦИП МЕТОДА (молекулярно-биологическая основа)

Среди большого многообразия гибридизационных методов анализа ДНК, метод ПЦР наиболее широко используется в клинической лабораторной диагностике.

Принцип метода полимеразной цепной реакции (ПЦР) (Polymerase chain reaction (PCR)) был разработан Кэри Мюллисом (фирма “Cetus”, США) в 1983г. и в настоящее время широко используется как для научных исследований, так и для диагностики в практическом здравоохранении и службе Госсанэпиднадзора (генотипирование, диагностика инфекционных заболеваний).

В основе метода ПЦР лежит природный процесс - комплементарное достраивание ДНК матрицы, осуществляемое с помощью фермента ДНК-полимеразы. Эта реакция носит название репликации ДНК.

Естественная репликация ДНК включает в себя несколько стадий:

1) Денатурация ДНК (расплетение двойной спирали, расхождение нитей ДНК);

2) Образование коротких двухцепочечных участков ДНК (затравок, необходимых для инициации синтеза ДНК);

3) Синтез новой цепи ДНК (комплементарное достраивание обеих нитей)

Данный процесс можно использовать для получения копий коротких участков ДНК, специфичных для конкретных микроорганизмов, т.е. осуществлять целенаправленный поиск таких специфических участков, что и является целью генодиагностики для выявления возбудителей инфекционных заболеваний.

Открытие термостабильной ДНК-полимеразы (Taq-полимеразы) из термофильных бактерий Thermis aquaticus , оптимум работы которой находится в области 70-72°С, позволило сделать процесс репликации ДНК циклическим и использовать его для работы in vitro. Создание программируемых термостатов (амплификаторов), которые по заданной программе осуществляют циклическую смену температур , создало предпосылки для широкого внедрения метода ПЦР в практику лабораторной клинической диагностики. При многократном повторении циклов синтеза происходит экспоненциальное увеличение числа копий специфического фрагмента ДНК, что позволяет из небольшого количества анализируемого материала, который может содержать единичные клетки микроорганизмов получить достаточное количество ДНК копий для идентификации их методом электрофореза.

Комплементарное достраивание цепи начинается не в любой точке последовательности ДНК, а только в определеннных стартовых блоках- коротких двунитевых участках. При присоединении таких блоков к специфическим участкам ДНК можно направить процесс синтеза новой цепи только в этом участке, а не по всей длине ДНК цепи. Для создания стартовых блоков в заданных участках ДНК используют две олигонуклеотидные затравки (20 нуклеотидных пар), называемые праймерами. Праймеры комплементарны последовательностям ДНК на левой и правой границах специфического фрагмента и ориентированы таким образом, что достраивание новой цепи ДНК протекает только между ними.

Таким образом, ПЦР представляет собой многократное увеличение числа копий (амплификация) специфического участка ДНК катализируемое ферментом ДНК- полимеразой.

Для проведения амплификации необходимы следующие компоненты:

Смесь дезоксинуклеотидтрифосфатов (дНТФ) (смесь четырех дНТФ, являющихся материалом для синтеза новых комплементарных цепей ДНК)

Фермент Taq-полимераза (термостабильная ДНК-полимераза, катализирующая удлиннение цепей праймеров путем последовательного присоединения нуклеотидных оснований к растущей цепи синтезируемой ДНК).

Буферный раствор
(реакционная среда, содержащая ионы Mg2+, необходимые для поддержания активности фермента)
Для определения специфических участков генома РНК-содержащих вирусов, сначала получают ДНК-копию с РНК-матрицы, используя реакцию обратной транскрипции (RT), катализируемую ферментом ревертазой (обратной транскриптазой).

Для получения достаточного количества копий искомого характеристического фрагмента ДНК амплификация включает несколько (20-40) циклов.



Каждый цикл амплификации включает 3 этапа, протекающих в различных температурных режимах

1 этап: Денатурация ДНК (расплетение двойной спирали). Протекает при 93-95°C в течение 30-40 сек.

2 этап: Присоединение праймеров (отжиг). Присоединение праймеров происходит комплементарно к соответствующим последовательностям на противоположных цепях ДНК на границах специфического участка. Для каждой пары праймеров существет своя температура отжига, значения которой располагаются в интервале 50-65°С. Время отжига -20-60 сек.

3 этап: Достраивание цепей ДНК. Комплементарное достраивание цепей ДНК происходит от 5’-конца к 3’-концу цепи в противоположных направлениях, начиная с участков присоединения праймеров. Материалом для синтеза новых цепей ДНК служат добавляемые в раствор дезоксирибонуклеотидтрифосфаты (дНТФ). Процесс синтеза катализируется ферментом термостабильной ДНК-полимеразой (Taq-полимеразой) и проходит при температуре 70-72°С. Время протекания синтеза - 20-40 сек.






Образовавшиеся в первом цикле амплификации новые цепи ДНК служат матрицами для второго цикла амплификации, в котором происходит образование искомого специфического фрагмента ДНК (ампликона). (см.рис.2). В последующих циклах амплификации ампликоны служат матрицей для синтеза новых цепей. Таким образом происходит накопление ампликонов в растворе по формуле 2n, где n-число циклов амлификации. Поэтому, даже если в исходном растворе первоначально находилась только одна двухцепочечная молекула ДНК, то за 30-40 циклов в растворе накапливается около 108 молекул ампликона. Этого количества достаточно для достоверной визуальной детекции этого фрагмента методом электрофореза в агарозном геле. Процесс амплификации проводится в специальном программируемом термостате (амплификаторе), который по заданной программе автоматчески осуществляет смену температур согласно числу циклов амплификации.

СТАДИИ ПРОВЕДЕНИЯ ПЦР - АНАЛИЗА


В основе метода ПЦР, как инструмента лабораторной диагностики инфекционных заболеваний лежит обнаружение небольшого фрагмента ДНК возбудителя (несколько сот пар оснований), специфичного только для данного микроорганизма, с использованием полимеразной цепной реакции для накопления искомого фрагмента.
Методика проведения анализа с использованием метода ПЦР включает три этапа:

1. Выделение ДНК (РНК) из клинического образца


2. Амплификация специфических фрагментов ДНК
3. Детекция продуктов амплификации

Выделение ДНК (РНК)
На данной стадии проведения анализа клиническая проба подвергается специальной обработке, в результате которой происходит лизис клеточного материала, удаление белковых и полисахаридных фракций , и получение раствора ДНК или РНК, свободной от
ингибиторов и готовой для дальнейшей амплификации.
Выбор методики выделения ДНК(РНК) в основном определяется характером обрабатываемого клинического материала.

Амплификация специфических фрагментов ДНК
На данной стадии происходит накопление коротких специфических фрагментов ДНК в количестве, необходимом для их дальнейшей детекции. В большинстве методик определения специфических фрагментов генома используется т.н. “классический вариант направленной ПЦР. Для повышения специфичности и чувствительности анализа в некоторых методиках используется метод “гнездной” (nested) ПЦР, в котором используются 2 пары праймеров (“внешние” - для 1 стадии, и “внутренние” - для 2-ой стадии).

Детекция продуктов амплификации
В большинстве методик на данном этапе проводится разделение смеси продуктов амплификации, полученной на 2-ой стадии, методом горизонтального электрофореза в агарозном геле. До проведения электрофоретического разделения, к амплификационной смеси добавляется раствор бромистого этидия, образущий с двухцепочечными фрагментами ДНК прочные соединения внедрения. Эти соединения под действием УФ-облучения способны флуоресцировать, что регистрируется в виде оранжево-красных светящихся полос после электрофоретического разделения амплификационной смеси в агарозном геле.

В качестве альтернативы электрофоретическому методу детекции, имеющему некоторые недостатки: субъективность чтения результатов, ограничения по определению ДНК различных микроорганизмов в одной реакции, могут быть предложены гибридизационные схемы детекции. В этих схемах образующийся в результате амплификации фрагмент ДНК гибридизуется (образует 2-х цепочечные комплексы - "гибриды") со специфическим олигонуклеотидным зондом. Регистрация таких комплексов может быть проведена колориметрически или флуориметрически. В НПФ "Литех" созданы наборы для детекции на основе гибридизации с флуориметрической регистрацией результатов

ПРЕИМУЩЕСТВА МЕТОДА ПЦР как метода диагностики инфекционных заболеваний:

- Прямое определение наличия возбудителей

Многие традиционные методы диагностики, например иммуноферментный анализ, выявляют белки-маркеры, являющиеся прдуктами жизнедеятельности инфекционных агентов, что дает лишь опосредованное свидетельство наличия инфекции. Выявление специфического участка ДНК возбудителя методом ПЦР дает прямое указание на присутствие возбудителя инфекции.



- Высокая специфичность

Высокая специфичность метода ПЦР обусловлена тем, что в исследуемом материале выявляется уникальный, характерный только для данного возбудителя фрагмент ДНК. Специфичность задается нуклеотидной последовательностью праймеров, что исключает
возможность получения ложных результатов, в отличие от метода иммуноферментного анализа, где нередки ошибки в связи с перекрестно-реагирующими антигенами.

- Высокая чувствительность

Метод ПЦР позволяет выявлять даже единичные клетки бактерий или вирусов. ПЦР-диагностика обнаруживает наличие возбудителей инфекционных заболеваний в тех случаях, когда другими методами (иммунологическими, бактериологическими,
микроскопическими) это сделать невозможно. Чувствительность ПЦР-анализа составляет 10-1000 клеток в пробе (чувствительность иммунологических и микроскопических тестов - 103-105 клеток).

-Универсальность процедуры выявления различных возбудителей

Материалом для исследования методом ПЦР служит ДНК возбудителя. Метод основан на выявлении фрагмента ДНК или РНК, являющегося специфичным для конкретного организма. Сходство химического состава всех нуклеиновых кислот позволяет применять унифицированные методы проведения лабораторных исследований. Это дает возможность диагносцировать несколько возбудителей из одной биопробы. В качестве исследуемого материала могут использоваться различные биологические выделения (слизь, моча, мокрота), соскобы эпителиальных клеток, кровь, сыворотка.

- Высокая скорость полученоя результата анализа
Для проведения ПЦР-анализа не требуется выделение и выращивание культуры возбудителя, что занимает большое количество времени. Унифицированный метод обработки биоматериала и детекции продуктов реакции, и автоматизация процесса амплификации дают возможность провести полный анализ за 4-4.5 часа.

Следует отметить, что методом ПЦР возможно выявление возбудителей не только в клиническом материале, полученном от больного, но и в материале, получаемом из объектов внешней среды (вода, почва и т.д.)

ПРИМЕНЕНИЕ МЕТОДА ПЦР В ПРАКТИЧЕСКОМ ЗДРАВООХРАНЕНИИ

Использование метода ПЦР для диагностики инфекционных заболеваний как бактериальной, так и вирусной природы имеет колоссальное значение для решения многих проблем микробиологии и эпидемиологии. Применение этого метода также способствует развитию фундаментальных исследований в области изучения хронических и малоизученных инфекционных заболеваний.

Наиболее эффективно и экономически обоснованно использование метода в:

урогинекологической практике - для выявления хламидиоза, уреаплазмоза, гонореи, герпеса, гарднереллеза, микоплазменной инфекции;

в пульмонологии - для дифференциальной диагностики вирусных и бактериальных пневмоний, туберкулеза;

в гастроэнтерологии - для выявления геликобактериоза;

в клинике инфекционных заболеваний - в качестве экспресс-метода диагностики сальмонеллеза, дифтерии, вирусных гепатитов В,С и G;

в гематологии - для выявления цитомегаловирусной инфекции, онковирусов.

В конце статьи см.
Полимеразную цепную реакцию (ПЦР, PCR) изобрёл в 1983 году Кэри Мюллис (американский учёный). Впоследствии он получил за это изобретение Нобелевскую премию. В настоящее время ПЦР-диагностика является, одним из самых точных и чувствительных методов диагностики инфекционных заболеваний.
Полимеразная цепная реакция (ПЦР) - экспериментальный метод молекулярной биологии, способ значительного увеличения малых концентраций определённых фрагментов нуклеиновой кислоты (ДНК) в биологическом материале (пробе).
В основе метода ПЦР лежит многократное удвоение определённого участка ДНК при помощи ферментов в искусственных условиях (in vitro). В результате нарабатываются количества ДНК, достаточные для визуальной детекции. При этом происходит копирование только того участка, который удовлетворяет заданным условиям, и только в том случае, если он присутствует в исследуемом образце.
Кроме простого увеличения числа копий ДНК (этот процесс называется амплификацией), ПЦР позволяет производить множество других манипуляций с генетическим материалом (введение мутаций, сращивание фрагментов ДНК), и широко используется в биологической и медицинской практике, например, для диагностики заболеваний (наследственных, инфекционных), для установления отцовства, для клонирования генов, введения мутаций, выделения новых генов.

Специфичность и применение

Проведение ПЦР

Для проведения ПЦР в простейшем случае требуются следующие компоненты:

  • ДНК-матрица, содержащая тот участок ДНК, который требуется амплифицировать;
  • два праймера, комплементарные концам требуемого фрагмента;
  • термостабильная ДНК-полимераза;
  • дезоксинуклеотидтрифосфаты (A, G, C, T);
  • ионы Mg2+, необходимые для работы полимеразы;
  • буферный раствор.

ПЦР проводят в амплификаторе - приборе, обеспечивающем периодическое охлаждение и нагревание пробирок, обычно с точностью не менее 0,1°C. Чтобы избежать испарения реакционной смеси, в пробирку добавляют высококипящее масло, например, вазелиновое. Добавление специфичеких ферментов может увеличить выход ПЦР-реакции.
Ход реакции

Обычно при проведении ПЦР выполняется 20 - 35 циклов, каждый из которых состоит из трех стадий. Двухцепочечную ДНК-матрицу нагревают до 94 - 96°C (или до 98°C, если используется особенно термостабильная полимераза) на 0,5 - 2 минуты, чтобы цепи ДНК разошлись. Эта стадия называется денатурацией - разрушаются водородные связи между двумя цепями. Иногда перед первым циклом проводят предварительный прогрев реакционной смеси в течение 2 - 5 минут для полной денатурации матрицы и праймеров.
Когда цепи разошлись, температуру понижают, чтобы праймеры могли связаться с одноцепочечной матрицей. Эта стадия называется отжигом. Температура отжига зависит от праймеров и обычно выбирается на 4 - 5°С ниже их температуры плавления. Время стадии - 0,5 - 2 минут.

ДНК-полимераза реплицирует матричную цепь, используя праймер в качестве затравки. Это - стадия элонгации. Температура элонгации зависит от полимеразы. Часто используемые полимеразы наиболее активны при 72°C. Время элонгации зависит как от типа ДНК-полимеразы, так и от длины амплифицируемого фрагмента. Обычно время элонгации принимают равным одной минуте на каждую тысячу пар оснований. После окончания всех циклов часто проводят дополнительную стадию финальной элонгации, чтобы достроить все одноцепочечные фрагменты. Эта стадия длится 10 - 15 мин.
Подготовка материала к исследованию и транспорт его в лабораторию

Для успешного проведения анализа важно правильно собрать материал у пациента и правильно провести его подготовку. Известно, что в лабораторной диагностике большинство ошибок (до 70%) совершается именно на этапе пробоподготовки. Для взятия крови в лаборатории ИНВИТРО в настоящее время применяются вакуумные системы, которые с одной стороны минимально травмируют пациента, а с другой - позволяют произвести взятие материала таким образом, что он не контактирует ни с персоналом, ни с окружающей средой. Это позволяет избежать контаминации (загрязнения) материала и обеспечивает объективность анализа ПЦР.

ДНК – дезоксирибонуклеиновая кислота - биологический полимер, один из двух типов нуклеиновых кислот, обеспечивающих хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная роль ДНК в клетках - долговременное хранение информации о структуре РНК и белков.


РНК– рибонуклеиновая кислота - биологический полимер, близкий по своему химическому строению к ДНК. Молекула РНК построена из тех же мономерных звеньев - нуклеотидов, что и ДНК. В природе РНК, как правило, существует в виде одиночной цепочки. У некоторых вирусов РНК является носителем генетической информации. В клетке играет важную роль при передаче информации от ДНК к белку. РНК синтезируется на ДНК-матрице. Процесс этот называется транскрипцией. В ДНК имеются участки, где содержится информация, ответственная за синтез трех видов РНК, различающихся по выполняемым функциям: информационной или матричной РНК (мРНК), рибосомальной (рРНК) и транспортной (тРНК). Все три вида РНК тем или иным способом участвуют в синтезе белка. Однако информация по синтезу белка содержится только в мРНК.


Нуклеоти́ды - основная повторяющаяся единица в молекулах нуклеиновых кислот, продукт химического соединения азотистого основания, пятиуглеродного сахара (пентозы) и одной или нескольких фосфатных групп. Нуклеотиды, представленные в нуклеиновых кислотах, содержат одну фосфатную группу. Они называются по содержащемуся в них азотистому основанию - адениновый (A), содержащий аденин, гуаниновый (G) - гуанин, цитозиновый (C) - цитозин, тиминовый (Т) - тимин, урациловый (U) - урацил. В состав ДНК входят 4 типа нуклеотидов - A, T, G, C, в состав РНК также 4 типа - A, U, G, C. Сахаром в составе всех нуклеотидов ДНК является дезоксирибоза, РНК - рибоза. При образовании нуклеиновых кислот нуклеотиды, связываясь, образуют сахаро-фосфатный остов молекулы, по одну сторону которого находятся основания.


Праймер – котроткая ДНК, используемая для репликации матричной цепи. Каждый из праймеров комплементарен одной из цепей двуцепочечной матрицы, обрамляя начало и конец амплифицируемого участка.


Литература

  1. Глик Б., Пастернак Дж. Молекулярная биотехнология. Принципы и применение. Пер. с англ. - М.: Мир, 2002. - 589 с., илл. ISBN 5-03-003328-9
  2. Щелкунов С.Н. Генетическая инженерия - Новосибирск: Сиб. унив. изд-во, 2004. - 496 с.; илл. ISBN 5-94087-098-8
  3. Патрушев Л.И. Искусственные генетические системы - М.: Наука, 2005 - В 2 т. - ISBN 5-02-033278-X

ВАЖНО!

Информацию из данного раздела нельзя использовать для самодиагностики и самолечения. В случае боли или иного обострения заболевания диагностические исследования должен назначать только лечащий врач. Для постановки диагноза и правильного назначения лечения следует обращаться к Вашему лечащему врачу.

Проведение ПЦР-анализа (PCR diagnostics) начинается с забора материала для исследования врачом-гинекологом, урологом или дерматовенерологом. Качество, достоверность полученных впоследствии результатов обеспечивается высочайшей квалификацией и огромным опытом работы врачей медицинского центра «Евромедпрестиж» , соблюдающих все необходимые правила проведения ПЦР-анализа: полная стерильность, использование исключительно одноразовых материалов.

Забранный материал со щеточки помещают в контейнер с физраствором. После забора пробы как можно скорее должны быть доставлены в ПЦР — лабораторию.

Проведение в лаборатории ПЦР-анализа происходит в три этапа:

  1. Выделение ДНК
  2. Амплификация ДНК-фрагментов
  3. Детекция ДНК-продуктов амплификации

Выделение ДНК — это первоначальный этап проведения ПЦР-диагностики, суть которого заключается в следующем: врач забирает у пациента материал для исследования и подвергает его специальной обработке. В процессе обработки происходит расщепление двойной спирали ДНК на отдельные нити. В материал пациента добавляется специальная жидкость, растворяющая органические вещества, мешающие «чистоте» проведения реакции. Таким образом удаляются липиды, аминокислоты, пептиды, углеводы, белки и полисахариды. В результате образуется ДНК или РНК.

Принцип метода ПЦР заключается в «строительстве» новых ДНК или РНК инфекций. Без удаления клеточного материала осуществить это невозможно.

Количество времени, затраченного на выделение ДНК, зависит от возбудителя инфекции и от вида используемого для исследования методом ПЦР материала. Например, для подготовки крови к следующему этапу требуется 1,5-2 часа.

0Array ( => Анализы) Array ( => 2) Array ( =>.html) 2

Амплификация ДНК

Для осуществления следующего этапа ДНК-диагностики — амплификации ДНК — врачи используют так называемые ДНК-матрицы — молекулы ДНК инфекций, на которые впоследствии будет происходить «клонирование» ДНК. Уже упоминалось, что наличие полной ДНК инфекции необязательно, для проведения этого этапа достаточно небольшого кусочка молекулы ДНК, который присущ только данному микробу (инфекции).

В основе амплификации ДНК и соответственно в основе всего принципа ПЦР-реакции лежит естественный для всего живого процесс достраивания ДНК — репликации ДНК, который осуществляется путем удвоения единичной цепочки ДНК.

Начав с одного-единственного фрагмента ДНК, врач-лаборант копирует его и увеличивает количество копий в режиме цепной реакции: после первого цикла у вас уже есть 2 фрагмента, после второго цикла — 4, после третьего — 8, после четвертого — 16, затем 32, 64, 128, 256... С каждым циклом происходит удвоение числа копий, и после двадцати циклов счет уже идет на миллионы, а после тридцати — на миллиарды. Цикл длится считанные минуты и сводится к определенному изменению температурного режима в очень небольшом химическом реакторе. Здесь в растворе в достаточном количестве находятся все нужные компоненты синтеза, прежде всего, нуклеотиды А, Г, Т и Ц, а также проведены тонкие подготовительные химические операции для того, чтобы с каждого готового отрезка ДНК тут же снималась точная копия, затем с этой копии — снова копия, в этом и состоит разветвленная цепная реакция.

Путем присоединения к цепи ДНК праймеров — искусственно синтезированных «кусочков» ДНК (нуклеотидных пар), аналогичных ДНК микробов (инфекции) — образуются две короткие, состоящие из двух цепей участков ДНК, спирали, необходимые для синтеза будущей ДНК.

Синтез новой цепи происходит путем достраивания каждой из двух нитей ДНК. Процесс амплификации происходит с помощью специфического участка — ДНК-полимеразы, давшему название лабораторному методу. Полимераза выступает в роли катализатора реакции и следит за последовательным прикреплением нуклеотидных оснований к растущей новой цепи ДНК.

Таким образом, амплификация ДНК представляет собой многократное увеличение числа копий ДНК, которые специфичны, т. е. присущи только определенному организму. Нет необходимости достраивать всю цепь ДНК, чтобы увидеть возбудителя инфекции. Нужен только тот участок, который характерен для данной бактерии как для индивидуальности.

5360 руб.Стоимость комплексной программы у врача гастроэнтеролога

СКИДКА 25%НА ПРИЕМ ВРАЧА КАРДИОЛОГА

- 25%первичный
приём врача
терапевта по выходным

5 160 руб.вместо 5 420 руб. Обследование мужчин на урологические инфекции

АЛЛЕРГОЛОГИЯ5 120 руб. вместо 5 590 руб.

Все многочисленно повторяющиеся этапы амплификации происходят при различных температурах. Для проведения ПЦР-анализа используется специально программируемое оборудование — ПЦР — термостат или амплификатор, которое автоматически осуществляет смену температур. Амплификация проводится по заданной программе, соответствующей виду определяемой инфекции. В зависимости от программы и вида определяемой инфекции процесс автоматизированной ПЦР занимает от 2 до 3 часов.

Важное значение в ПЦР-диагностике играет квалификация врача-лаборанта, проводящего анализ, от него зависит правильность настройки ПЦР-оборудования и интерпретация полученных результатов. Врачи медицинского центра «Евромедпрестиж» имеют большой опыт в проведении ДНК-диагностики, что обеспечивает достоверность полученных результатов исследования и гарантирует положительный успех в лечении инфекционных заболеваний. Чтобы сдать анализы методом ПЦР и провести полную диагностику и лечение инфекционных заболеваний в нашем медицинском центре «Евромедпрестиж».

В процессе детекции продуктов амплификации проходит разделение полученной смеси продуктов амплификации. К смеси добавляется специальные растворы, которые наделяют фрагменты ДНК способностью флуоресцировать — отражаться оранжево-красными светящимися полосами. Образующееся свечение выдает присутствие ДНК вирусов, микробов или бактерий в забранном у пациента на ПЦР-анализ материале.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама