THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Нитратное загрязнение характерно для различных природных сред и объектов окружающей среды. Особенно актуальна эта проблема для оценки качества питьевой воды и пищевых продуктов сельскохозяйственного происхождения, а также для изучения процессов антропогенной эвтрофикации водных объектов и решения проблемы загрязнения окружающей среды. В связи с разнообразием объектов, в которых регламентируется содержание нитратов, в литературе по аналитической химии, сборниках разрешенных к применению методик и в Технических нормативных правовых актах (ТНПА) присутствует большое разнообразие методик определения нитрат-ионов.

Большинство методик определения нитратов связаны с необходимостью использования сложного и дорогостоящего оборудования. Однако, некоторые из них после соответствующей модификации могут быть применены для создания простых в использовании тест-средств . Разработка новых методик измерений содержания нитратов тест-методами является одним из важных направлений в аналитической химии азота.

Таким образом, целью нашей работы является подбор методов определения нитрат-ионов, пригодных для создания тест-средств на их основе.

В связи с этим перед нами стояли следующие задачи:

· Определить критерии методов, пригодных для изготовления тест-средств на их основе.

· Провести обзор методов определения нитрат-ионов.

· Предложить методы определения нитрат-ионов, наиболее подходящие для создания тест-средств.

1. Методы определения нитратов

1.1 Методики определения нит ратов методом спектрофотометрии

Спектроскопические методы широко применяют для определения нитратов. Методы можно разделить на 4 группы.

1. Методы, основанные на нитровании органических соединений, особенно фенолов. Применяют хромотроповую кислоту, 2,4-кесиленол, 2,6-ксиленол, фенолдиульфоновую кислоту и 1-амино-пирен.

2. Методы, основанные на окислении органических соединений, например, бруцина.

3. Методы, основанные на восстановления нитрата до нитрита или аммиака, которые затем определяют. Лучшим методом этой группы является восстановление до нитрита и определение последнего реактивом Грисса.

4. Метод основанный на поглощении нитрата в УФ-области.

Принципиальная схема любого спектрального прибора (рис. 1.1) состоит из трех основных частей: осветительной I, спектральной (оптической) II, и приемно-регистрирующей III.

Спектроскопические методы подчиняются закону Бугера- Ламберта-Бера, который звучит так: определение ослабления пучка монохроматическим светом при его прохождении через поглощающее вещество.

Определения нитратов колориметрическим методом с бруцином.

Сущность метода состоит в том, что нитрат- и нитрит- ионы взаимодействуют с бруцином в среде серной кислоты при различной кислотности: Нитрит-ионы при более низкой концентрации (17 вес,%), нитрат-ионы при более высокой (50 вес. %). Нитрат-ионы образуют с бруцином сначала соединение красного цвета, но затем окраска быстро изменяется на желтую, сильно поглощенную в области 400-420 нм. Чувствительность метода примерно 0,1 мкг NO3-/мл. Наилучшие результаты получаются в диапазоне 1-4 мкг/мл, когда кривая поглощение концентрация NO3- близка клинейной. В смеси H2SO4 и HCIO4 следует спектрофотометрировать раствор при 430 нм. Ошибка определения составляет «плюс, минус» 1,5%. Мешают Fe, Cu, K, Na, Mn, Zn, AI, CI-, F-, B-. В растворах, содержащих NO-3 и NO-2 , нитриты предварительно окисляют до NO-3 с помощью KMnO4. Определение NO-3 в присутствии NO-2 можно проводить также в более кислой среде (>6,5М), причем к анализируемому раствору добавляют KNO3, так как специальными опытами установлено, что присутствие 2-10 мкг NO-2 дает постоянное, легко учитываемое завышение оптической плотности фотометрируемого раствора.

Определения нитратов колориметрическим методом с дифениламином.

Сущность метода определения нитратов колориметрическим методом с дифениламином основан на колориметрировании окрашенных продуктов реакции, получающихся при взаимодействии дифениламина с нитрат ионами в сильно кислой среде. При этом дифениламин окисляется азотной кислотой и образуется хиноидная аммониевая соль дифенилбензидина, окрашенная в интенсивно синий цвет. В пробирку наливают 1 мл анализируемой воды, прибавляют 1 каплю раствора NaCl и осторожно по стенкам пробирки, избегая перемешивания, приливают 2-3мл 0.017 % раствора дифениламина в серной кислоте. В присутствии нитратов на границе соприкосновения растворов образуется голубое кольцо, скорость появления которого и интенсивность окраски зависят от содержания нитратов. Примерное количество нитратов можно определить по данным табл. №1 Раствор дифениламина готовят растворением 170 мг дифениламина в серной кислоте. Для этого 170г дифениламина растворяют в мерной колбе на 1000 мл добавлением дистиллированной воды, в которую перед этим добавляют около 50-100мл концентрированной серной кислоты. После растворения дифениламина колба наполняется до метки серной кислотой. Раствор хлорида натрия готовят растворением 20г NaCl в колбе на 100 мл дистиллированной водой.

Количественное определение нитрат ионов проводят фотоколориметрически на приборе ФЭК салицилатным методом. Сущность метода состоит в образовании нитратов с салицилатом натрия в присутствии серной кислоты комплексов желтого цвета.

К 20 мл пробы добавляют 2 мл салицилата натрия, выпаривают в фарфоровой чашке досуха, охлаждают, добавляют 2 мл концентрированной серной кислоты и оставляют на 10 минут. Добавляют 15 мл дистиллированной воды и 15 мл сегнетовой соли. Переносят в колбу на 50 мл, доводят раствор до метки дистиллированной водой и определяют оптическую плотность при 410 нм в кювете на 2 см. Содержание нитрат ионов определяют по градуировочной кривой, которая строится в диапазоне от 0,1 до 4,0 мг NO3-.

Реактивы:

1. Основной стандартный раствор КNO3 0,1 мг N/л: 0,7216 г КNO3 растворяют в мерной колбе на 1 литр и добавляют 1 мл хлороформа.

2. Рабочий стандартный раствор: 10 мл раствора № 1 разбавляют в колбе на 100 мл и получают раствор 0,01 мг N/л.

3. Раствор салицилата натрия, 0,5 %.

4. Щелочной раствор сегнетовой соли. 400 г NaOH и 60 г сегнетовой соли растворяютв 1 литре дистиллированной воды.

5. Серная кислота, х.ч или ч.д.а., концентрированная.

6. Гидроксид алюминия, суспензия. Растворяют 125 г алюмокалиевых или алюмоаммонийных квасцов в 1 л дистиллированной воды, нагревают до 60° С и медленно при непрерывном перемешивании прибавляют 55 мл концентрированного раствора аммиака. Дают постоять 1 час, переносят в большую бутыль (8л) и промывают осадок многократной декантацией дистиллированной водой.

Градуировочная кривая

Определение восстановлением до аммиака

Сущность методасостоит в том, что нитраты восстанавливаются до аммиака действием сплава Деварда или металлического алюминия в щелочной среде. Аммиак отгоняют в раствор борной кислоты и определяют титриметрическим или фотометрическим методом.

Мешающие вещества. Определению мешают ионы аммония и свободный аммиак. Для удаления их раствор подщелачивают и аммиак отгоняют, при этом можно его определить в отгоне. Нитриты восстанавливаются в ходе анализа вместе с нитратами до аммиака, их определяют вместе с последними. Если содержание нитритов велико, то лучше их предварительно разрушить, и затем отделить содержимое одних нитратов.

При относительно малом содержании нитритов. К 100 мл анализируемой воды приливают 2 мл раствора едкого натра или едкого кали и для удаления концентрируют кипячением до объема 20 мл. Затем переносят раствор в колбу или цилиндр Несслера, разбавляют до 50 мл дистиллированной, не содержащей аммиака водой и вводят 0,5 г сплава Деварда. Чтобы защитить сосуд от попадания в него пыли и в то же время не препятствовать выделению водорода, закрывают сосуд пробкой клапаном Бунзена и оставляют на 6 ч. Затем переносят раствор в колбу для перегонки, разбавляют 200 мл водой, не содержащей аммиака, отгоняют аммиак в раствор борной кислоты и заканчивают определение аммиака титриметрическим или фотометрическим методом.

При высоком содержании нитритов. Пробу 100 мл анализируемой воды, нейтрализуют титрованным раствором кислоты или щелочи, прибавляют 10 мл буферного раствора, вводят 0,2 г хлорида аммония и выпаривают досуха на водяной бане. Нитриты при этом реагируют с ионами аммония, образуя азот. Остаток растворяют в 100 мл дистиллированной воды, прибавляют едкого натра и упаривают раствор при кипячении до объема 25 мл, удаляя таким способом аммиак. Дальше продолжают, как описано в разд. 1 , и получают содержание азота нитратов, поскольку нитриты были удалены предварительной обработкой.

Реактивы.

Дистиллированная вода, не содержащая аммиака.

Едкий натр или едкое кали, раствор. Раствор 250 г NaOH или КОН в 1250мл дистиллированной воды, прибавляют несколько полосок алюминиевой фольги и дают водороду выделиться в течении ночи. Затем раствор доводят кипячением до 1 л.

Хлорид аммония и сплав Деварда.

Определение нитратов восстановлением до нитритов.

Сущность метода. Предназначен для определения нитратов в поверхностных водах с содержанием 0,01-0,035 мг /л. В случае более высоких концентраций нитратов пробу перед определением необходимо разбавлять дважды дистиллированной водой.

Принцип метода метод основан на восстановлении нитратов металлическим кадмием

NO3- + Cd + H2O= NO2- +2OH- +Cd2

И последующем определении образующихся нитритов с реактивом Грисса или N-(нафтаил)- этилендиамином и сульфаниламидом. Эффективность кадмия как восстановителя значительно возрастает, если он предварительно обработан раствором соли меди. Восстановленная при этом медь оседает на поверхности кадмия, образуя с ним гальваническую пару. Степень восстановления нитратов зависит от pH раствора и максимальная при рН =9,6. Продолжительность работы кадмиевого редуктора достаточно велика несколько сотен проб.

Оптическую плотность раствора нитритов определяют при л = 536 нм (v=18600 см-1). Линейная зависимость между оптической плотностью растворов и концентраций нитритов сохраняется в пределах от 0,010 до 0,35 мг N/л.

Характеристики метода. Минимальная определяемая концентрация 0,010 мг N/л. Относительное стандартное отклонений U при концентрациях от 0,100 до 0,300 составляет 5,0 % (N=30). Продолжительность определения единичной пробы 1 ч. Серия из 6 проб определяется в течении 2 ч.

Мешающие влияния. Определению мешают гумусовые вещества. Последние вступают во взаимодействие с медью и кадмием с образованием комплексных соединений, накапливающихся на поверхности металла и нарушающих нормальную работу редуктора. Поэтому при анализе окрашенных вод необходима предварительная обработка исследуемой пробы активированной окисью алюминия, не содержащей нитратов.

Для этого в пробу окрашенной воды объемом 300-350 мл насыпают окись алюминия объемом примерно равным 25мл, хорошо взбалтывают, дают немного отстояться и фильтруют через неплотный фильтр (белая или красная лента).

При значительном содержании сероводорода предварительно добавляют CdCI2 в небольшом избытке к сульфид-иону и отфильтровывают или центрифугируют осадок CdS. В противном случае на поверхности кадмия образуется сульфид, нарушающий работу редуктора.

Для анализа отбирают две порции исследуемой воды: 25 и 100 мл. В первой из них определяют нитриты, а во второй проводят восстановление нитратов до нитритов. Для этого к 100 мл анализируемой воды, помещенным в колбу или стакан на 250 мл, прибавляют 2 мл раствора хлорида аммония. Содержимое колбы перемешивают и пропускают через кадмиевый редуктор со скоростью 8-10 мл/ мин по секундомеру. Первые 70 мл пробы, прошедшие через редуктор, отбрасывают, последующие 25мл отбирают в отдельный приемник и сразу добавляют около 10мг сухого реактива Грисса.

Смесь перемешивают и через 40 мин измеряют оптическую плотность раствора на спектрофтометре (л+536 нм, v=18600см-1) . Содержание нитритов находят по калибровочной кривой.

Построение калибровочной кривой.

Для построения калибровочной кривой в мерные колбы емкостью 100 мл приливают 0; 0,5; 1,0; 2,0; 3,0; 4,0; 5,0; 6,0 мл рабочего стандартного раствора и доводят объем до метки дистиллированной водой. Концентрации этих растворов соответственно равны 0; 0,025; 0,050; 0,10; 0,15; 0,20; 0,30 мг N/л. Проводят определение нитратов. Строят калибровочную кривую, откладывая на оси абсцисс концентрацию нитратов в мг N/л, на оси ординат- оптическую плотность.

Расчет. Содержание нитритов Cх в мг N/л рассчитывают по формуле: Cх= Сn- C1, где С-концентрация (мг N/л) нитратов и нитритов в растворе, пропущенном через редуктор. Последнюю находят по калибровочной кривой для нитритов; n- степень разбавления исходной пробы воды (в случае, если исследуемую пробу не разбавляю, n=1; если взято 20 мл и разбавлено до 100 мл, n=5); C1 - концентрация нитритов в исследуемой воде, найденная по калибровочной кривой для нитритов, мг N/л.

Раствор хлорида аммония х.ч. 175 мг хлорида аммония растворяют в дистиллированной воде и объем раствора доводят водой до 500 мл. Устойчив в течении нескольких месяцев.

Раствор сульфата меди х.ч. растворяют в дистиллированной воде и объем раствора доводят, до 1 л.

Кадмий металлический, 99,9% омедненный. Редуктор заполняют омедненным кадмием в виде опилок.

Соляная кислота, 5%-ная. 143 мл концентрированной соляной кислоты разбавляют до 1л. дистиллированной водой.

Реактив Грисса, х.ч. Готовый сухой реактив перед употреблением растирают в ступке.

Окись алюминия, квалифицированная. 50 г окиси алюминия заливают 200 мл 2 н. КОН на 10 ч, а затем деконтацией отмывают до нейтральной реакции по индикаторной бумаге. Хранят в склянке с притертой пробкой.

Раствор едкого кали КОН, х.ч. , 2 н 22,4 г КОН растворяют в небольшом количестве дистиллированной воды и объем раствора доводят до 200 мл. Раствор готовят перед употреблением.

1 .2 Методики определени я нитратов методом флюориметрии

Флюориметрия (люминесцентный анализ) -- определение концентрации вещества по интенсивности флюоресценции, возникающей при облучении вещества ультрафиолетовыми лучами. При соответствующих условиях этим путём можно обнаружить наличие ничтожных количеств вещества. Люминесцентный анализ делится на макроанализ -- при наблюдении невооруженным глазом, и микроанализ, когда наблюдение производится при помощи микроскопа.

Описан чувствительный флюориметрический метод определения нитрата, основанный на одностадийной реакции. При взаимодействии нитрата с флюоресценом в кислой среде образуется динитрофлюоресценин. Флуоресценцию измеряют при 485 нм и возбуждении 435 нм. Предел обнаружения нитрата в растворе составляет 0,01 мкг/мл. определению мешают хлориды, бромиды и иодиды. Определению не мешает 10-кратный избыток нитрита, большее содержания мешают. Для Флюориметрического определения нитрат-ионов применен 2,3- диаминонафталин.

Сначала нитрат восстанавливают до нитрита, который взаимодействует с реагентом. Интервал определяемых содержаний нитрата в растворе - 0,05-5 мкг/мл. Предел обнаружения можно снизить в 5 раз.

Разработан автоматический анализатор нитрата с производительностью 20проб в 1ч, использованной для анализа воды и осадков с предельным содержанием нитратного азота 5мкг/л. Определению не мешают высокие содержания хлорида, сульфида и гуминовых кислот.

Метод инфракрасной спектроскопии.

Для идентификации анионов методом ИК-спектроскопии применен нитрон. В спектрах поглощения нитрата нитрона наблюдаются характеристические полосы при 1370 и 1337 см-1. Разработан количественный метод определения нитратов, основанный на поглощении в области 1370 см-1 . При определении миллиграммовых содержании нитрата относительное стандартное отклонение составляет около 5%. Определению не мешают двукратные содержания NO2-, СI; BrO3-. Изучена возможность определения нитрита методом ИК-отражательной спектроскопии.

1 .3 Методики определения нитратов методом потенциометрии

В основе потенциометрических измерений нежит зависимость равновесного потенциала электрода от активности (концентрации) определяемого иона. Для измерений необходимо составить гальванический элемент из подходящего индикаторного электрода и электрода сравнения, а также иметь прибор для измерения потенциала индикаторного электрода в условиях, близких к термодинамическим, т. е. без отвода заметного тока от гальванического элемента при замыкании цепи.

Различают прямую и косвенную потенциометрию, или потенциомет-рическое титрование. Существует два метода применения нитрат-селективных электродов. Один метод основан на построении эмпирического градировочного графика зависимости электродного потенциала от концентрации нитрата или на построении этой же зависимости в полулогарифмических координатах. В последнем случае для определения NО3- используют линейную зависимость потенциала от логарифма концентрации NO3-. Электродом сравнения обычно служит каломельный электрод.

Другой метод, нашедший применение в анализе, основан на применении нитратного электрода для потенциометрического титрования, а именно для установления точки эквивалентности. Интервал определяемых концентраций NO3- составляет 10-6 -- 10-1 М. Определению не мешают умеренные содержания CI-, SО4-2 Р04-3 и СО3-2 мешает нитрит, но его влияние можно устранить описанными ранее приемами. Электрод не чувствителен к катионам. Наибольшие помехи оказывают ионы I-, СIO3- и СIO-. Нитратный электрод может быть применен в широком интервале кислотности от рН = 2 до

рН = 12.

Описан электрод для работы в сильнокислой среде, в котором активным компонент тетра дециламмонийнитрат, находится в полимерной матрице из поливинилхлорида, пластифицированной дибутилфталатом или диоктилфталатом. Электрод позволяет определять НNО3 в интервале концентраций 10-4 -- 6,2 М. .

Ионоселективный электроды

Важное преимущество ионоселективного электрода заключается в возможности применения его для автоматизации анализа. Анионы, образующие устойчивые комплексы или малорастворимые осадки (например, хлориды) можно определять методом потенциометрического титрования, причем конечную точку устанавливают с помощью ионоселективного электрода. Для определения нитрата этот метод применить труднее. Тем не менее описан метод титрования нитрата сульфатом дифенилталлия(III) и нитроном. Основные недостатки метода связаны с мешающим влиянием галогенидов и сравнительно высоким уровнем определяемых содержаний нитрата. .

Колориметрический метод с фенолдисульфокислотой.

(HOC6H5 (S03H)2). ГОСТ 18826-73

Метод основан на реакции между нитратами и фенолдисульфоновой кислотой с образованием нитропроизводных фенола, которые со щелочами образуют соединения, окрашенные в желтый цвет. Определению мешают хлориды в концентрации более 10мг/л; их влияние устраняется в ходе анализа добавлением сульфата серебра. При содержании нитритов более 0,7 мг/л получаются завышенные результаты. Определению мешает цветность воды более 20-25С; в этом случае к 150мл исследуемой воды добавляют 3 мл суспензии гидроксида алюминия, пробу тщательно перемешивают и после отстаивания в течение нескольких минут осадок отфильтровывают, отбрасывая первую порцию фильтрата. Чувствительность метода 0,1 мг/л нитратного азота.

Фенолдисульфокислота. 25 г кристаллического бесцветного фенола (если препарат окрашен то необходимо его очистить перегонкой) растворяют в 150 мл серной кислоты с 1,84 г/см3 и нагревают в течении 6 ч на водяной кипящей бане в колбе с обратным холодильником. Раствор хранят в склянке из темного стекла с притертой пробкой.

Сульфат серебра, раствор. 4,4 сульфата серебра растворяют в дистиллированной воде и доводят объем до 1 л в мерной колбе. 1 мл раствора эквивалентен приблизительно 1 мг хлор-иона. Раствор хранят в склянке из темного стекла с притертой пробкой.

Гидроксид алюминия, суспензия для коагуляции.

Аммиак, 25% раствор

Стандартный раствор нитрата калия. 0,7216 г нитрата калия, высушенного при 105 С до постоянной массы, растворяют в дистиллированной воде и в мерной колбе доводят объем раствора до 1 литра. Для консервации прибавляют 1 мл хлороформ. В 1 мл раствора содержится 0,1 мг нитратного азота.

Для анализа отбирают 100мл или менее прозрачной воды или фильтрата (содержание нитратного азота в этом объеме не должно превышать0,4мг), добавляют раствор сульфата серебра в количестве, эквивалентном содержанию хлор-иона в исследуемой пробе. После осаждения сухого осадка добавляют в чашу 1 мл и фенолдисульфоновой кислоты и тотчас же растирают стеклянной палочкой до полного смешения с сухим остатком. Добавляют 15-20 мл дистиллированной воды и через 10мин 5 мл концентрированного аммиака до максимального развития окраски. Окрашенный раствор переносят в колометрический цилиндр или мерную колбу на 100 мл, ополаскивают чашу небольшими порциями дистиллированной воды, сливая в эту же колбу, и доводят оббьем до метки дистиллированной водой. Определяют оптическую плотность окрашенного раствора на фотоколориметре с синим светофильтром (г =480 нм) в кюветах с толщиной оптического слоя 2см по отношению с дистиллированной воде с добавлением всех реактивов.

Приготовление шкалы стандартных растворов и построение калибровочного графика 0,2 - 0,5-1,0-1,5-2 мл стандартного раствора выпаривают в фарфоровых чашках досуха и продолжают как при анализе пробы. Получают шкатулку растворов с содержанием 0,03-0,05-0,10-0,15-0,20 мг азота нитратов. Фотометрируют и строят калибровочный график в координатах оптическая плотность - содержание азота нитратов (мг). Содержание нитратов (мг/л) рассчитывают по формуле:

где А -- количество азота нитратов, найденное по калибровочному графику или по шкале стандартных растворов (мг); V -- объем пробы, взятой для анализа (мл).

Колориметрический метод с салициловокислым натрием C7 H3NaO3. ГОСТ 18826-73.

Сущность метода основана на реакции нитратов с салициловокислым натрием в присутствии серной кислоты с образованием соли нитросалициловой кислоты, окрашенной в желтый цвет. Определению мешают цветность воды, влияние которой устраняется так же, как и в методе с фенолдисульфокислотой; хлориды в концентрации, превышающей 200 мг/дм3, которые удаляют добавлением раствора сернокислого серебра к 100 см3 исследуемой воды в количестве, эквивалентном содержанию хлор-иона. Осадок хлорида серебра отфильтровывают или отделяют центрифугированием; нитриты в концентрации 1-2 мг/дм3 и железо в концентрации более 0,5 мг/дм3. Влияние железа может быть устранено добавлением 8-10 капель раствора калия-натрия виннокислого перед выпариванием воды в фарфоровой чашке. Чувствительность метода 0,1 мг/л азота нитратов.

Татрат калия-натрия (сегнетовая соль), 30% раствор.

Салицилат натрия, 0,5% раство. Применяют свежеприготовленным.

Гидроксид натрия, 10 н. раствор

Сульфат серебра, раствор. Сульфат серебра, раствор. 4,4 сульфата серебра растворяют в дистиллированной воде и доводят объем до 1 л в мерной колбе. 1 мл раствора эквивалентен приблизительно 1 мг хлор-иона. Раствор хранят в склянке из темного стекла с притертой пробкой

Стандартный раствор нитрата калия. 0,7216 г нитрата калия, высушенного при 1050С до постоянной массы, растворяют в дистиллированной воде и в мерной колбе доводят объем раствора до 1 литра. Для консервации прибавляют 1 мл хлороформ. В 1 мл раствора содержится 0,1 мг нитратного азота.

10 мл исследуемой воды помещают в фарфоровую чашку. Прибавляют 1 мл раствора салициловокислого натрия и выпаривают на водяной бане досуха. После охлаждения сухой остаток увлажняют 1 мл концентрированной серной кислоты, тщательно растирают его стеклянной палочкой и оставляют на 10 мин. Затем добавляют 5-10 мл дистиллированной воды и количественно переносят в мерную колбу вместимостью 50 мл. Прибавляют 7 мл 10 н. раствора едкого натра, доводят объем дистиллированной водой до метки и перемешивают. В течение 10 мин после прибавления едкого натра окраска не изменяется. Сравнение интенсивности окраски исследуемой пробы производят фотометрическим методом, измеряя оптическую плотность раствора с фиолетовым светофильтром в кюветах с толщиной рабочего слоя 2-5 см при фиолетовом светофильтре (г =480 нм) по отношению у дистиллированной воде с добавлением всех реактивов. Из найденных значений оптической плотности вычитают оптическую плотность нулевой пробы и по калибровочному графику находят содержание нитратов.

Построение калибровочного графика

Для приготовления стандартных растворов в колориметрические пробирки с отметкой на 10 мл отбирают 0,0; 0,5; 1,0; 2,0; 3,0; 4,0; 6,0 и 10 мл рабочего стандартного раствора азотнокислого калия (1 мл - 0,01 мг N) и доводят дистиллированной водой до отметки. Содержание нитратного азота в растворах соответственно будет равно 0,5; 1,0; 2,0; 3,0; 4,0; 6,0; 10,0 мг/л. Затем растворы переносят в фарфоровые чашки, прибавляют по 1 мл раствора салициловокислого натрия и выпаривают на водяной бане досуха. Сухой остаток обрабатывают так же, как описано при анализе пробы исследуемой воды. Оптическую плотность окрашенных растворов измеряют с помощью электрофотоколориметра, используя фиолетовый светофильтр и кюветы с толщиной рабочего слоя 1-5 см. Из полученных величин вычитают оптическую плотность нулевой пробы и результаты наносят на график.

Разработаем автоматический анализатор нитрата с производительностью 20проб в 1ч, использованной для анализа воды и осадков с предельным содержанием нитратного азота 5мкг/л. Определению не мешают высокие содержания хлорида, сульфида и гуминовых кислот.

Определение содержания нитратов в почве по Грандваль-Ляжу

Определение нитратов проводится в день взятия пробы и при естественной влажности почвы. Метод основан на взаимодействии нитратов с дисульфофеноловой кислотой с образованием тринитрофенола (пикриновая кислота), который в щелочной среде даёт жёлтую окраску за счёт образования тринитрофенолята калия (или натрия в зависимости от используемой щёлочи) в количестве, эквивалентном содержанию нитратов желтое окрашивание. Интенсивность окраски определяют на фотоколориметре.

На технических весах берут 20 г свежей почвы и помещают в колбу объёмом 150-200 см3. Приливают цилиндром 100 см3 дистиллированной воды (или 0,02 н. раствора K 2SO4) и взбалтывают на ротаторе в течение 3 мин по песочным часам. Фильтруют в сухую посуду через воронку с двойным складчатым бумажным фильтром, стараясь перенести максимальное количество почвы на фильтр. Не следует наливать раствор в воронку более 1/2 её объёма. Если фильтрат мутный, в колбу с почвой прибавляют 3 - 5 г активированного угля, либо фильтруют до конца и добавляют в фильтрат 0,4 см3 7%-го раствора щелочи и 0,6 см3 13%-го раствора AI2(S04)3 на 100 см3 вытяжки. Выпавший осадок отфильтровывают через чистый фильтр.

Берут пипеткой 25-50 см3 прозрачного фильтрата в фарфоровую чашку объёмом 50-100 см 3 . И выпаривают содержимое на водяной бане до 1 капли. При пересушивании сухого остатка могут быть потери нитратов. Чашку снимают с водяной бани и осадок досушивают на воздухе. В фарфоровую чашку после охлаждения приливают пипеткой 1 см 3 дисульфофеноловой кислоты и тщательно растирают сухой остаток небольшой стеклянной палочкой. Для удобства работы чашку ставят на специальную подставку, приливают в нее 10-15 см3 дистиллированной воды, перемешивают и опускают в раствор кусочек лакмусовой бумаги 1 см2. Небольшими порциями из бюретки приливают 20%-й раствор щёлочи до окрашивания лакмусовой бумаги в синий цвет. При этом образуется комплексное соединение устойчивой жёлтой окраски. Если раствор помутнеет, добавляют 2-3 капли щёлочи, постоянно перемешивая стеклянной палочкой. Переносят количественно содержимое чашки в мерную колбу на 50 или 100 см3 через небольшую воронку без фильтра. Доводят раствор до метки, закрывают пробкой и взбалтывают. Раствор колориметрируют с синим светофильтром. Длина волны 400 - 440 нм.

Построение калибровочного графика.

Стандартный раствор: 0,1631 г перекристаллизованного KNO3 растворяют в дистиллированной воде в мерной колбе на 1 дм3.

Образцовый раствор: 10 см3 стандартного раствора переносят пипеткой в мерную колбу на 100 см3 и доводят дистиллированной водой до метки. В 1 см3 полученного раствора содержится 0,01 мг NO3- или 0,00226 мг N. В мерных колбах на 50 или 100 см3 готовят стандартную шкалу в соответствии с таблицей, предварительно выпарив соответствующее количество образцового раствора. При выпаривании небольших количеств (1-5 см3) образцового раствора в чашку приливают 5-10 см3 дистиллированной воды во избежание пересушивания сухого остатка. Окрашивание растворов калибровочной шкалы проводится в соответствии с описанной выше методикой. № колбы 1 2 3 4 5 6 7 Количество образцового р-ра, см3 1 2 5 10 15 20 25 Содержание NO3- в колбе, мг 0,01 0,02 0,05 0,10 0,15 0,20 0,25.

Дисульфофеноловая кислота

20%-й раствор NaOH или КОН. 20 г NaOH или KOH растворить в 80 см3 дистиллированной воды. Лакмусовая бумага.

Ионометрический метод определения содержания нитратов

Сущность метола заключается в извлечении нитратов раствором алюмокалиевых квасцов и последующем измерении концентрации нитратов с помощью ионоселективного электрода.

Среднюю пробу сена, силоса, сенажа, зеленых кормов и т. п. измельчают на измельчителе проб растений, соломорезке или ножницами на отрезки длиной 1 --3 см. Методом квартования выделяют часть пробы, масса которой после высушивания должна быть не менее 50 г. Высушивание проб проводят до воздушно-сухого состояния при температуре 60--65 0С. Воздушно-сухую пробу размалывают на лабораторной мельнице и просеивают через сито. Остаток на сите измельчают ножницами и добавляют к просеянной части и тщательно перемешивают.

При анализе проб зеленых кормов, силоса и сенажа в натуральном виде выделенную часть измельченной средней пробы используют непосредственно для анализа или после размалывания на мельнице в течение 2--4 мин.

Из средней пробы комбикормов или комбикормового сырья методом квартования выделяют окаю 50 г материала, размалывают без предварительного подсушивания и просеивают через сито. Остаток на cите с массовой долей не более 4 % измельчают ножницами, добавляют к просеянной части и тщательно перемешивают.

Пробы жидких кормов анализируют без предварительной подготовки.

Приготовление раствора алюмокалиевых квасцов с массовой долей1 % (экстрагирующий раствор)

10 г алюмокалиевых квасцов взвешивают с погрешностью не более 0,1 г, переносят в химический стакан вместимостью 1000 см3 и растворяют в 990 см3 дистиллированной воды.

Раствор хранят в склянке с притертой пробкой не более 1 года. При появлении мути или осадка раствор заменяют свежеприготовленным.

Приготовление экстрагирующего раствора для определения нитратов в культурах семейства капустных

10 г алюмокалиевых квасцов переносят в химический стакан вместимостью 1000 см3, растворяют в 990 см3 дистиллированной волы. Затем (1.0±0.001) г марганцово-кислотного калия помешают в ту же колбу и добавляют 0,6 см3 концентрированной серной кислоты. Полученную смесь взбалтывают до растворения всех градиентов, доводят раствор до метки дистиллированной водой и хранят в склянке с притертой пробкой.

При анализе комбикормов с использованием нитратомеров 5 г навески разбавляют 45 см3 алюмокалиевых квасцов.

Ход работы

Из предварительно измельченной на тарелке пробы корнеклубнеплодов берут навеску массой 10 г, взвешенную с погрешностью не более 0,1 г. Навеску помешают в технологическую емкость вместимостью 100 или 200 см3, приливают 50 см3 раствора алюмокалиевых квасцов и перемешивают с помощью мешалки в течение 3 мни. Перемешивание можно заменить гомогенизацией в течение 1 мин.

Из предварительно измельченной ножницами пробы травянистых кормов берут навеску массой 10 г, взвешенную с погрешностью не более 0.1 г. Навеску помешают в стакан гомогенизатора, приливают 50 см3 раствора алюмокалиевых квасцов и гомогенизируют в течение 1--2 мин. при отсутствии гомогенизатора возможно измельченную массу с экстрагирующим раствором нагревать в кипящей водяной бане в течение 15 мин с последующим охлаждением и доведением до первоначального объема.

При анализе трав семейства капустных (рапс, редька. горчица, свербига и г. д.) или кормов, в которые одним из компонентов входят эти травы, (10-0.1) г измельченного материала помещают в технологическую емкость вместимостью 100--200 см3, добавляют 50 см3 экстрагирующий раствор, перемешивают с помощью мешалки в течение 3 мин. Затем при помешивании добавляют по каплям (1.0--0,5 см3) 33 %-ного раствора перекиси водорода до обесцвечивания раствора. В полученной суспензии измеряют концентрацию нитрат-ионов.

Для сочных кормов с целью ускорения и снижения трудоемкости анализа возможно использование сока для анализа. Пробу, подготовленную для анализа, пропускают через соковыжималку. Полученный сок собирают в одну емкость и перемешивают. При анализе всех культур, кроме семейства капустных, отбирают пипеткой 10 см3 сока с погрешностью не более 0,1 см3, помешают в технологическую емкость вместимостью 100--200 см3, прибавляют 50 см3 раствора алюмокалиевых квасцов, перемешивают и в полученном растворе измеряют концентрацию нитрат-ионов.

При анализе трав семейства капустных к (10±0,1) см3 сока, помешенного в технологическую емкость вместимостью 100--200 см3, добавляют 50 см3 раствора алюмокалиевых квасцов. Раствор перемешивают и измеряют концентрацию нитрат-ионов.

Концентрацию нитрат-ионов измеряют непосредственно в логарифмических единицах рСо (рСNO3 - log СNO3.) по шкале иономера, предварительно отградуированною по растворам сравнения, или в милливольтах с последующим определением значения единиц pCNO3 по градуировочному графику, построенному по результатам измерения ЭДС электродной пары в растворах сравнения, или на приборах, имеющих преобразователи значений концентрации нитрат-ионов в растворе в значения их концентрации в исследуемой продукции.

Перед измерениями и после градуировки прибора электроды тщательно ополаскивают дистиллированной водой, промокают фильтровальной бумагой и погружают в испытуемые пробы. Показания прибора считают не менее чем через 1 мин после прекращения заметного дрейфа показаний прибора. При переходе от одной пробы к другой электроды ополаскивают дистиллированной водой и промокают фильтровальной бумагой. Температура анализируемых проб и растворов сравнения должна быть одинаковой. Настройку прибора проверяют по растворам сравнения не менее трех раз в течение рабочего дня, используя каждый раз свежие порции раствора сравнения. Перед каждой проверкой настройки иономера нитратный ионоселективный электрод выдерживают в растворе сравнения концентрации с (NO3) = 0.0001 моль/дм3 в течение 3--4 мин.

1 .4 Методики определения нитратов методом кондуктометрии

Прямые кондуктометрические измерения.

Аналитическое использование кондуктометрии обладает характерными чертами, связанными с низкой селективностью кондуктометрического детектирования. Однако, близкие значения эквивалентных электропроводностей ионов не позволяют говорить о том, что какой-либо ион может целиком определять электропроводность всего раствора. Таким образом, измерения электропроводности может приносить реальную аналитическую пользу только в том случае, если соотношение ионов в анализируемой смеси неизменно от пробы к пробе. Это, так называемая, задача определения разбавления исходного раствора. Примерами могут служить анализ промывных вод в ваннах отмывки гальванического производства, контроль за приготовлением технологических растворов в производственных условиях и т.п.

1 .5 Методики определения нитратов методом хроматографии

В основу общепринятых классификаций многочисленных хроматографических методов положены следующие признаки: агрегатное состояние подвижной и неподвижных фаз, механизм взаимодействия сорбент-сорбат, форма слоя сорбента (техника выполнения), цель хроматографирования.

По механизму взаимодействия сорбента и сорбата можно выделить несколько видов хроматографии: распределительная хроматография основана на различии в растворимости разделяемых веществ в неподвижной фазе или на различии в растворимости веществ. фазах; ионообменная хроматография основана на разной способности веществ к ионному обмену; адсорбционная хроматография -- на различии в адсорбируемости вещество твердым сорбентом; эксклюзионная хроматография -- на различии в размерах и формах молекул разделяемых веществ, аффинная хроматография -- на специфических взаимодействиях, характерных для некоторых биологических и биохимических процессов. Существуют пары веществ, реагирующих в растворах с высокой избирательностью, например антитело и антиген, фермент и его субстрат или ингибитор, гормон и соответствующий рецептор.

Методы определения нитрат-ионов в почве.

По данным ФАО рекомендуемая дневная доза потребления нитратов должна составлять 500 мг/кг, а в диетических продуктах до 300 мг/кг. В разных странах эти величины значительно колеблются. Поэтому необходимо знать предельно допустимое содержание нитратов в продуктах питания и кормах и установить строгий контроль за этими величинами. Во всех странах для нитратов в продуктах питания человека устанавливают свои ПДК.В нашей стране для некоторых продуктов установлены следующие ПДК, мг NO3/кг: томаты - 60 ; картофель 80; морковь -300; свекла столовая 1400.

Нитраты имеют высокую подвижность и легко мигрируют в почве под влиянием осадков. Это обусловлено тем, что они не образуют каких-либо малорастворимых солей и не поглощаются отрицательно заряженными почвенными коллоидами, находясь в ряду поглощаемых анионов на последнем месте(ОН>РО4- >SiO42->CI->NO3-). Вследствие хорошей растворимости нитраты могут извлекаться из почвы водой или слабым солевым раствором, например 0,05% K2SO4 -в этом случае фильтрование вытяжки идет быстрее и фильтрат получается прозрачным, что особенно важно, когда почвы сильно диспергируются. Извлечение нитратов проводят при соотношении почвы к раствору 1:5 и 3 - минутном взбалтывании.

Определение нитратов проводят дисульфофеноловым методом, в основе которого лежит реакция

а) 3HNO3 + C6H3OH(HSO3)2 C6H2OH(NO2)3 + 2H2SO4 + H2O

б) C6H2OH(NO2)3 + NaOH C6H2OH(NO2)3ONa + H2O

Пикрат натрия

Соль пикриновой кислоты окрашивает раствор в желтый цвет. Оптическую плотность полученного раствора определяют, используя синий светофильтр (400-450 нм)фотоколориметра.

Навеску 20 г воздушно-сухой почвы помещают в колбу на 250 мл и заливают ее 100 мл 0,05 % раствором K2SO4 . Содержимое взбалтывают 3 мин. И сразу же фильтруют через складчатый фильтр.

В зависимости от ожидаемого содержания нитратов 10-15 мл вытяжки помещают в фарфоровую чашку на 100 мл выпаривают досуха на водяной бане.

После выпаривания чашке дают охладиться. После в чашку приливают по 1мл дисульфофеноловой кислоты. Сухой остаток на дне и стенках чашки тщательно растирают с этой кислотой стеклянным пестиком, чашку оставляют в покое около 10 мин, а затем приливают 15 мл дистиллированной воды. Смесь доводят до щелочной реакции 20%-ным NаОН, прибавляя пипеткой. Щелочь прекращают добавлять, когда раствор приобретает устойчивую желтую окраску. Небольшой избыток щелочи не вредит окраске. Окрашенный раствор через воронку переносят в мерную колбу на 50 мл. Чашку и стеклянный пестик несколько раз ополаскивают водой, также перенося ее в мерную колбу.Объем жидкости доводят дистиллированной водой до метки и хорошо перемешивают.

Одновременно в таких же фарфоровых чашках делают эталонный раствор. нитрат спектрофотометрия визуальный колометрический

Сравнение окрасок проводят сразу же, так как окрашенные почвенные вытяжки при состоянии меняют окраску.

Реактивы.

1) 0,05%-ный K2SO4: 0,5 г на л;

2) дисульфофеноловая кислота - C6H3OH(HSO3)2 готовый препарат;

3) 20%-ный NаОН: 20 г разводят водой до 100 мл;

4) Запасной эталонный раствор на нитратный азот: 0,7216 г х.ч. KNO3 помещают в мерную колбу на 1 л, растворяют в дистиллированной воде, доводят объем до метки и перемешивают. Полученный раствор содержит в 1 мл 0,1 мг нитрат-иона.

5) Рабочий раствор готовят из запасного разбавлением в 10 раз.

Определение содержания нитратов с гидразином в модификации ЦИНАО (ГОСТ 26488).

Метод основан на восстановлении нитратов гидразином в присутствии меди в качестве катализатора с последующим фотоколориметрическим определением в виде окрашенного диазосоединения.

Навеску почвы 30 г помещают в колбу емкостью 150 - 200 CMJ. Приливают цилиндром 75 мл 0,1 н. раствора KCl. Взбалтывают на ротаторе 1 ч. отфильтровывают. К 5 см3 фильтрата приливают 10 см 3 щелочного раствора натрия пирофосфорнокислого и 10 см 3 рабочего восстанавливающего раствора, перемешивают. Через 10 мин приливают 25 см3 рабочего окрашивающего раствора, перемешивают. Фотометрируют не ранее чем через 15 мин и не позднее чем через 1,5 ч после прибавления рабочего окрашивающего раствора. Фотометрирование проводят при длине волны 545 нм или используют светофильтр с максимумом пропускания 510 - 560 нм. Реактивы.

1. 1 н. раствор KCl.

2. Раствор катализатора: 2,5 г CuS04-5H20 растворяют в дистиллированной воде и доводят до 1 дм3.

3. Запасной восстанавливающий раствор: 27.5 г сернокислого гидразина растворяют в дистиллированной воде и доводят до 1 дм3. Раствор хранят в склянке с притертой пробкой не более 3 мес.

4. Рабочий восстанавливающий раствор: 6 см3 раствора катализатора и 200 см3 запасного восстанавливающего раствора вливают в мерную колбу на 1 дм3 и доводят объем дистиллированной водой до метки. Раствор готовят в день проведения анализа.

5. Запасной окрашивающий раствор: в мерную колбу на 1 дм3 наливают около 500 см3 дистиллированной воды, приливают 100 см3 фосфорной кислоты, добавляют 5 г сульфаниламида и 1 г нафтиламина. После растворения реактивов доводят объем до метки.

6. Рабочий окрашивающий раствор: запасной окрашивающий раствор разбавляют дистиллированной водой в соотношении 1:4 и растворяют в нем трилон Б из расчета 0.2 г на 1 дм3 раствора.

7. Щелочной раствор пирофосфорнокислого натрия: 5 г пирофосфорнокислого натрия и 8 г гидроокиси натрия растворяют в дистиллированной воде и объем доводят до 1 дм3. Хранят в склянке с притертой пробкой не более 3 мес.

8. Раствор азота нитратов массовой концентрации 0.125 мг/см3.

9. Растворы сравнения: в мерные колбы вместимостью 250 см3 помещают указанные далее в таблице объемы раствора с массовой концентрацией азота нитратов 0.125 мг/см3 и доводят объемы до меток раствором хлористого калия концентраций 1 моль/дм3. Характеристика растворов сравнения

1 ,2 ,3 ,4 ,5 ,6 ,7, 8, объем раствора, с массовой концентрацией N-NO-, 0.125 мг/см 3 0, 2 ,4 ,8 ,12, 16 ,20 ,24 концентрация азота нитратов: в растворе сравнения, мг/дм3 0 1 2 4 6 8 10 12 в пересчете на массовую долю в почве мл3 1 0, 2.5 , 5.0, 10, 15, 20 , 25, 30 , растворы сравнения используют для градуировки фотоэлектроколориметра в день проведения анализа. Окрашивание растворов сравнения проводят аналогично окрашиванию анализируемых вытяжек и одновременно с ними.

Определение нитратов в почве с помощью ионоселективного электрода.

Метод основан на определении концентрации нитратов в почве с помощью ионоселективного электрода в солевой суспензии 1%-го раствора алюмокалиевых квасцов при соотношении проб: раствор 1:2,5.

Метод используют для определения нитратов во всех почвах, кроме засоленных.

Пробу сухой почвы (навеска 20 г), просеянной через сито с диаметром отверстий 2 мм, помещают в конические колбы объемом 100 см3 и приливают 50 см3 1%-го раствора алюмокалиевых квасцов и перемешивают в течение 3 мин. В полученной суспензии нитратным ионо-селективным электродом измеряют активность нитрат-иона. Активность ионов NO3- находят по калибровочному графику, построенному на миллиметровой бумаге.

Стандартные растворы.

Исходный 0,1 M раствор KNO3: взвешивают 10,11 г соли KNO3, предварительно перекристаллизованный и высушенной при 105°С, растворяют в 1%-м растворе алюмокалиевых квасцов в колбе объемом 1000 см3 и доводят до метки тем же раствором.

Методы определения нитратов в пищевых продуктах.

Определение нитрат-ионов в молоке.

Определение основано на применении твердого мембранного ионоселективного электрода и построении градуировочного графика для установления концентрации нитрат-ионов по экспериментально измеренному потенциалу электрода.

Для построения градуировочного графика при анализе молока рекомендуется метод добавок, поскольку мембранные ионоселек-тивные электроды чувствительны, например, к белкам и высокомолекулярным соединениям.

Реактивы

1. Лимонная кислота кристаллическая ч д а

2. Ортофосфат натрия кристаллический ч д а

3. Нитрат калия, 0,1 моль/дм3 раствор.

Для приготовления раствора красителя в химический стакан пометают 4,60 г амидо черного, 31,70 г лимонной кислоты и 8,40 г ортофосфата натрия, добавляют 300см3 дистиллированной воды. Смесь перемешивают, нагревают на водяной бане при температуре не выше 70 0С, охлаждают струей водопроводной воды и переносят в мерную колбу вместимостью 2000 см3 через воронку с бумажным фильтром. Фильтр промывают дистиллированной водой, доводят раствор до метки водой, перемешивают; рН полученного раствора должен находиться на уровне 2,3 ± 0,1.

Раствор красителя применяют в анализе через 12 ч после приготовления; хранят не более 4 месяцев в холодильнике в бутыли из темного стекла 1 см3 анализируемого молока добавляют 20 см3 раствора амидо черного, образующего с белками нерастворимое соединение и центрифугируют. Центрифугат (1 см3) помешают в мерную колбу вместимостью 50 см3 и доводят до метки дистиллированной водой. Для построения градуировочного графика методом добавок. аналогично готовят четыре раствора вводя дополнительно в мерные колбы 5; 7,5; 10 и 12,5 см3 раствора нитрата калия. Приготовленные растворы поочередно помещают в электролитическую ячейку потенциометра и измеряют потенциал ионоселективного электрода

По полученным данным, начиная с потенциала анализируемого раствора, строят градуировочный график.

Продукты мясные

Методы определения нитрата ГОСТ 8558.2-78

Настоящий стандарт распространяется на мясные продукты всех видов, а также рассолы и посолочные смеси и устанавливает метод определения нитрата.

Метод основан на восстановлении нитрата до нитрита с помощью кадмиевой колонки, фотометрическом измерении интенсивности окраски, образующейся при взаимодействии сульфаниламида и N-(1нафтил) этилендиамин дигидрохлорида с нитритом, определении количества последнего и пересчете его на нитрат за вычетом нитрита, содержащегося в продукте.

Реактивы.

Калин железистосинероднстый по ГОСТ 4207, ч.л.а.

Цинк металлический гранулированный по ТУ 6--09--5294.

Цинк уксуснокислый по ГОСТ 5823. чл.а.

Кислота уксусная ледяная по ["ОСТ 61. х.ч.

Натрий тетраборнокислый (бура) по ГОСТ 4199. ч.д.а.

Кадмий сернокислый по ГОСТ 4456.

Кислота соляная по ГОСТ 3118,чд.а.. концентрированная (плотность 1.19 г/см"), 0,1 моль/дм1 аствор.

Сольдинатриевая этиленднамии-N, N. N\ N"-тетрауксусноЙ кислоты, 2-водная (трилон Б) по ГОСТ 10652.

Аммиак водный по ГОСТ 3760.

Натрий азотнокислый по ГОСТ 4197. чл.а.

Стрептоиид белый (сульфаниламид).

Калий азотнокислый по ГОСТ 4217.

Вода дистиллированная по ГОСТ 6709.

N-0-нафтил) этилендиамин дигндрохлорид.

Вата стеклянная.

(Измененная редакция. Изм. № I, 2, 3).

Ход анализа

10 г подготовленной к анализу пробы, взвешенной с погрешностью не более 0.001 г, помешают в черную колбу вместимостью 200 см1. В колбу с навеской добавляют последовательно 5 см" насыщенного раствора буры и 100 см3 воды с температурой 75 градусов.

Колбу с содержимым нагревают на кипящей водяной бане 15 мин, периодически встряхивая, затем охлаждают до (20±2) 0С и, тщательно перемешивая, последовательно добавляют по 2 см3 реактива Карреза I и реактива Карреза 2. затем доводят до метки и выдерживают 30 мин при (20±2) 0С. Затем содержимое колбы фильтруют через складчатый бумажный фильтр.

Параллельно проводят контрольный анализ на реактивы, помещая в мерную колбу вместимостью 200 см3 вместо испытуемой пробы 10 см3 воды.

В полученном фильтрате определяют массовую долю нитрита(Х1).

Для определения содержания нитрата 20 см3 фильтрата пипеткой наливают в резервуар колонки и сразу же добавляют 5 см3 аммонийного буфера.

Вытекающий из колонки раствор собирают в мерную колбу вместимостью 100 см3, промывая колонку водой. Затем доводят уровень жидкости до метки и перемешивают.

В мерную колбу вместимостью 100 см3 вносят не более 20 см3 полученного из колонки раствора и доливают водой до объема не более 60 см5. Добавляют 10 см3 раствора 1для проведения цветной реакции. Раствор перемешивают и выдерживают в темном месте при (20±2) 0С 5 мин. Затем добавляют 2 см3 раствора 2 для проведения цветной реакции, перемешивают и ставят в темное место на 3 мин. Доводят раствор до метки, перемешивают и измеряют интенсивность красной окраски раствора на фотоэлектроколориметре с зеленым светофильтром или спектрофотометре при длине волны 538 нм в кювете с толщиной поглощающего свет слоя 1 см в отношении раствора сравнения. Если оптическая плотность окрашенного раствора превышает максимальное значение оптической плотности по градуировочному графику, то цветную реакцию проводят с меньшей порцией раствора.

Обработка результатов

За окончательный результат испытании принимают среднее арифметическое результатов двух параллельных определений и вычисляют с точностью до 0,0001%.

Предел возможных значений относительной погрешности измерений -- 2 % при вероятности 0,95.

2. Экспресс-методы определения нитратов

2.1 Визуально-колориметрическое определение нитратов

Подобные документы

    Понятие нитратов (солей азотной кислоты) и их химические свойства. Основное применение нитратов: удобрения (селитры) и взрывчатые вещества (аммониты). Биологическая роль солей азотной кислоты. Описание органических нитратов и нитритов. Свойства аммония.

    презентация , добавлен 14.03.2014

    Основные способы предварительной обработки воды при ее деминерализации: фосфатирование, аминирование и нитратирование. Схема дозировки реагентов. Методы определения содержания нитратов и аммиака в котловой воде. Предупреждение в котле кальциевой накипи.

    презентация , добавлен 15.03.2013

    Определение сахара в сухих винах с использованием колоночной хроматографии. Химические свойства моносахаридов и полисахаридов. Фотоколориметрическое определение общего сахара в кондитерских изделиях. Определение крахмала в зерновом сырье по методу Эверса.

    курсовая работа , добавлен 29.06.2014

    Органолептические методы анализа вкуса и запаха питьевой воды. Расчет массы сухого остатка и водородного показателя. Изучение концентрации нитратов, фторидов, хлоридов. Определение цветности, содержания железа, щелочности, жесткости и окисляемости воды.

    курсовая работа , добавлен 26.01.2013

    Методы определения металлов. Химико-спектральное определение тяжелых металлов в природных водах. Определение содержания металлов в сточных водах, предварительная обработка пробы при определении металлов. Методы определения сосуществующих форм металлов.

    курсовая работа , добавлен 19.01.2014

    Способ определения группового и компонентно-фракционного состава нестабильного газового конденсата методами газоадсорбционной и капиллярной газовой хроматографии с прямым вводом пробы НГК, находящейся под давление без предварительного разгазирования.

    дипломная работа , добавлен 24.11.2015

    Методы определения железа в почвах: атомно-абсорбционный и комплексонометрический. Соотношение групп соединений железа в различных почвах. Методики определения подвижных форм железа с помощью роданида аммония. Эталонные растворы для проведения анализа.

    контрольная работа , добавлен 08.12.2010

    Молекулярная масса (ММ) как одна из характеристик полимеров, ее виды и методы определения. Молекулярно-массовое распределение полимеров. Методы осмометрический, ультрацентрифугирования, светорассеяния и вискозиметрии. Определение ММ по концевым группам.

    курсовая работа , добавлен 16.10.2011

    Методы определения редуцирующих веществ в гидролизатах. Определение легко- и трудногидролизуемых полисахаридов, массовой доли PB в гидролизатах по методу Макэна-Шоорля и эбулиостатическим методом. Анализ гидролизатов методом газожидкостной хроматографии.

    реферат , добавлен 24.09.2009

    Химическая характеристика хлорид-иона, особенности его реакционной способности и степень вреда для окружающей среды. Наиболее частые пути попадания хлорид-иона в атмосферу, почву и воду, основные методы его определения и химической нейтрализации.

Предельно допустимая концентрация (ПДК) нитритов (NO 2 –) в питье­вой воде водоемов 3,3 мг/л, нитратов (NO 3 –) - 45 мг/л.

Качественное определение нитратов и нитритов. На часовое или предметное стекло поместите 3 капли раствора дифениламина, приготов­ленного на концентрированной серной кислоте (Осторожно!) ,и 1-2 кап­ли исследуемой воды. В присутствии нитрат- и нитрит-ионов появляется синее окрашивание, интенсивность которого зависит от их концентрации.

Раздельное определение нитратов и нитритов следует начинать с об­наружения нитритов, которые мешают определению нитратов.

Определение нитритов. К 5 мл исследуемой воды прибавить 0,5 мл реактива Грисса (Осторожно! Реактив содержит вредные вещества. Работать в вытяжном шкафу, используя пипетку с грушей) и на­греть до 70-80° С на водяной бане (в качестве бани можно использовать химический стакан на электроплитке). Появление розового окрашивания той или иной интенсивности свидетельствует о наличии нитрит-ионов в пробе.

Определение нитратов. Если в воде были обнаружены нитриты, то их предварительно нужно удалить. Для этого в пробирку берут 5 мл ана­лизируемой воды, прибавляют несколько кристалликов хлорида аммония и нагревают над газовой горелкой в течение 10-15 минут.

После этого присутствие нитратов можно определить раствором ди­фениламина, как описано выше, либо следующим способом.

К 3 мл исследуемого раствора прилить 2 мл 20%-ного раствора щело­чи, добавить 10-15 мг цинковой пыли, смесь осторожно нагреть (можно на водяной бане). Нитраты восстанавливаются до аммиака, который обнаруживается по покраснению фенолфталеиновой бумаги или по посинению красной лакмусовой, смоченной дистиллированной водой и внесенной в пары исследуемого раствора.

Качественное определение нитрит-ионов с приближенной количественной оценкой. В про­бирку диаметром 13-14 мм нали­вают 10 мл исследуемой воды, при­бавляют 1 мл реактива Грисса (ТБ!) и нагревают до 70-80° С на водяной бане. Через 10 мин. по­явившуюся окраску сравнивают со шкалой (табл. 8.10).

Количественное определение нитритов. Для приготовления шкалы готовят основной стандартный раствор (0,15 г нитрита натрия раство­ряют в 100 мл дистиллированной воды), содержащий 1 мг нитрит-ионов в мл раствора; рабочий раствор готовят разбавлением основного раствора в 1000 раз. С целью повышения точности эту операцию целесообразно выполнить в два приема - сначала разбавить раствор в 50 раз, а затем еще в 20 раз. Для этого 2 мл основного стандартного раствора переносят пипеткой в мерную колбу на 100 мл, доводят объем до метки дистиллиро­ванной водой, перемешивают. Затем из полученного раствора берут 5 мл в другую мерную колбу на 100 мл, так же доводят объем до метки и перемешивают. 1 мл полученного раствора содержит 1 мкг нитрит-ионов. В 10 мерных колб на 50 мл вносят рабочий раствор в соответствии с табл. 8.11 и доводят объем до метки дистиллированной водой.

Из каждой колбы взять по 5 мл раствора в 10 пронумерованных проби­рок, в 11-ю - 5 мл исследуемой воды, добавить в каждую по 0,5 мл реак­тива Грисса (ТБ!), перемешать и нагреть на водяной бане при 50-60°С. Через 10-15 минут интенсивность появившейся розовой окраски пробы сравнить со шкалой стандартных растворов.

Количественное определение суммарного содержания нитратов и нитритов. Определение проводят с реактивом Грисса (ТБ!) по вышеопи­санной методике, предварительно переведя нитраты в нитриты цинковой пылью в кислой среде при рН=3. Для перевода нитратов в нитриты к 10 мл исследуемой воды прибавляют 10-15 мг цинковой пыли и добавляют по каплям 0,1 н. раствор серной кислоты, доводя рН до 3, контролируя его значение по универсальной индикаторной бумаге. Через 10-15 минут ото­брать пипеткой 5 мл прозрачного раствора в пробирку и провести анализ.

Количественное определение нитратов. В фарфоровую чашку по­мещают 10 мл исследуемой воды, прибавляют 1 мл 0,5% раствора салицилата натрия или салициловой кислоты и выпаривают досуха на водяной бане. После охлаждения сухой остаток увлажняют 1 мл концентрирован­ной серной кислоты, тщательно растирают стеклянной палочкой и остав­ляют на 10 мин. Затем добавляют 5-10 мл дистиллированной воды и ко­личественно переносят в мерную колбу на 50 мл, прибавляют 7 мл 10М гидроксида натрия (Осторожно!), доводят объем дистиллированной во­дой до метки и перемешивают.

5 мл раствора наливают в пробирку и сравнивают его окраску с конт­рольной шкалой. За результат анализа следует принимать значение кон­центрации нитрат-анионов (в мг/л) того образца шкалы, который более всего соответствует окраске полученного раствора.

Если в лаборатории имеется фотоколориметр, раствор помещают в кювету, измеряют его оптическую плотность, значение концентрации нит­рат-анионов определяют по предварительно построенному градуировочному графику.

Если окраска содержимого пробирки окажется интенсивнее крайнего образца шкалы (5 мг/л) или значение оптической плотности выходит за пределы градуировочного графика, анализируемую воду разбавляют в 5 раз дистиллированной водой и определение повторяют. При вычислении результатов учитывают степень разбавления пробы.

Для приготовления шкалы готовят основной стандартный раствор, растворяя дистиллированной водой 0,032 г нитрата калия в мерной колбе на 200 мл (0,1 мг нитратов/мл), и рабочий раствор разведением основного в 10 раз (0,01 мг/мл). Затем в фарфоровые чашки вносят 0,1, 2, 5, 10, 15,20 и 25 мл рабочего раствора (что соответствует содержанию нитратов 0; 0,2; 0,4; 1,0; 2,0; 3,0; 4,0 и 5,0 мг/л), добавляют по 1 мл раствора салицилата натрия, выпаривают досуха. Далее проводят те же операции, что и с исследуемой пробой.

Определение нитратов и нитритов в воде по методу АЛ.Рычкова.

Для определения нитратов и нитритов по этому методу необходи­мы следующие медицинские препараты (их можно приобрести в аптеке): риванол (этакридина лактат), антипирин, оксафенамид, стрептоцид, гид­рокарбонат натрия (питьевая сода), физиологический раствор (0,9% ра­створ хлорида натрия в дистиллированной воде), а также соляная кислота и дихромат калия.

В питьевой воде должно содержаться не более 3,3 мг/л нитрит- и 45 мг/л нитрат-ионов.

Определение нитритов. Для контроля нитритов можно воспользовать­ся одним из трех методов, пределы обнаружения у которых составляют 1,3; 1,6 и 2 мг/л нитрит-ионов.

Риванольная реакция. К 1 мл исследуемой воды прибавляют 1 мл физиологического раствора и смешивают с 1 мл риванольного раствора (таблетку растворяют при нагревании в 200 мл 8%-ной соляной кислоты). Если появится бледная розовая окраска, значит, уровень нитритов в пить­евой воде недопустим.

Антипириновая реакция. 1 мл питьевой воды смешивают с 1 мл фи­зиологического раствора (концентрация нитритов при таком разведении падает вдвое), 1 мл раствора антипирина (одна таблетка в 50 мл 8%-ной соляной кислоты) и быстро прибавляют две капли 1%-ного раствора дих­ромата калия. Смесь нагревают до появления признаков кипения. Если в течение 5 мин. раствор становится бледно-розовым, то значит, что в нем содержится более 1,6 мг/л нитрит-ионов, а в пробе питьевой воды соот­ветственно вдвое больше (выше 3,2 мг/л). В этом случае содержание нит­рит-ионов превышает предельно допустимую концентрацию.

Домашняя модификация метода Грисса. Метод Грисса довольно трудоемок, но этот метод санитарно-гигиенического контроля можно вполне повторить на кухне, не используя быстроокисляющиеся реактивы и спе­циальную аппаратуру

К 1 мл солянокислого раствора стрептоцида (таблетка 0,5 г в 50 мл 8%-ной соляной кислоты) прибавляют 1 мл анализируемой воды, предва­рительно разбавленной вдвое дистиллированной водой или физраствором, и ставят на 2 мин. в холодильник. Затем в смесь понемногу присыпают гидрокарбонат натрия, пока не перестанут выделяться пузырьки газа. Здесь главное не переборщить с содой, так как ее избыток мешает цветной ре­акции. Поэтому следует добавлять ее по крупинкам. После того, как кис­лота нейтрализована, остается прибавить 1 мл холодного раствора оксафенамида в 10%-ный раствор гидрокарбоната натрия (в 100 мл физра­створа растворяют 20 таблеток по 0,5 г гидрокарбоната натрия и 1 таб­летку оксафенамида). Если в течение 5 мин. смесь приобретает бледно-желтую окраску, вода не пригодна к употреблению.

Определение нитратов (риванольная реакция). К 1 мл исследуе­мой воды прибавляют 2,2 мл физиологического раствора. Затем отбира­ют 2 мл приготовленного раствора, добавляют 1 мл солянокислого ра­створа риванола и немного порошка цинка (на кончике ножа). Если в течение 3-5 мин. желтая окраска риванола исчезнет и раствор окрасится в бледно-розовый цвет, то содержание нитратов в питьевой воде превыша­ет ПДК.

8.2.3.7. Хлориды

Концентрация хлоридов в водоемах-источниках водоснабжения допус­кается до 350 мг/л.

В поверхностных водах количество хлоридов зависит от характера пород, слагающих бассейны, и варьирует в значительных пределах - от десятых долей до тысячи миллиграммов на литр. В реках северной части России хлоридов обычно немного, не более 10 мг/л, в южных районах эта величина повышается до десятков и сотен мг/л. Много хлоридов попада­ет в водоемы со сбросами хозяйственно-бытовых и промышленных сточ­ных вод. Этот показатель весьма важен при оценке санитарного состоя­ния водоема.

В пробирку отбирают 5 мл исследуемой воды и добавляют 3 капли 10%-ного раствора нитрата серебра. Приблизительное содержание хло­ридов определяют по осадку или помутнению (табл. 8.12).

Количественное определение хлоридов. Хлориды определяют тит­рованием пробы анализируемой воды нитратом серебра в присутствии хромата калия как индикатора. Нитрат серебра дает с хлорид-ионами белый осадок, а с хроматом калия - кирпично-красный осадок хромата серебра. Из образовавшихся осадков меньшей растворимостью облада­ет хлорид серебра. Поэтому лишь после того, как хлорид-ионы будут свя­заны, начинается образование красного хромата серебра. Появление слабо-оранжевой окраски свидетельствует о конце реакции. Титрование можно проводить в нейтральной или слабощелочной среде. Кислую анализируе­мую воду нейтрализуют гидрокарбонатом натрия.

В коническую колбу помещают 100 мл исследуемой воды, прибавляют 1 мл 5%-ного раствора хромата калия и титруют 0,05 н. раствором нитра­та серебра при постоянном взбалтывании до появления слабо-красного окрашивания.

где 1,773 - масса хлорид-ионов (мг), эквивалентная 1 мл точно 0,05 н. раствора нитрата серебра;

V - объем раствора нитрата серебра, затраченного на титрование, мл. Техника безопасности! После работы обязательно вымыть руки.

8.2.3.8. Сульфаты

Концентрация сульфатов в воде водо­емов-источников водоснабжения допус­кается до 500 мг/л.

Качественное определение с приближенной количественной оцен­кой. В пробирку вносят 10 мл исследуемой воды, 0,5 мл раствора соляной кислоты (1:5) и 2 мл 5%-ного раствора хлорида бария, перемешивают. По характеру выпавшего осадка определяют ориентировочное содержание сульфатов: при отсутствии мути - концентрация сульфат-ионов менее 5 мг/л; при слабой мути, появляющейся не сразу, а через несколько мин.. -5-10 мг/л; при слабой мути, появляющейся сразу после добавления хлорида бария, - 10-100 мг/л; сильная, быстро оседающая муть свидетельствует о достаточно высоком содержании сульфат-ионов (более 100 мг/л).

Количественные методы определения сульфат-ионов

1 . Турбидиметрическое определение - определение сульфат-ионов в виде сульфата бария в кислой среде с помощью стабилизирующего реак­тива, в качестве которого можно использовать 0,5%-раствор желатина.

Сначала готовят шкалу стандартных растворов. Для этого в 12 прону­мерованных колб на 50 мл отбирают пипеткой определенные объемы ос­новного стандартного раствора в соответствии с табл. 8.13, доводят объем в каждой из колб до 50 мл дистиллированной водой и перемешивают.

Затем в 12 пронумерованных пробирок отбирают по 5 мл раствора из соответствующей колбы, а в 13-ю - 5 мл исследуемой воды. Во все пробир­ки прибавляют по 2 капли соляной кислоты 1:1, по 3 мл раствора желатина и тщательно перемешивают. Пробирки просматривают сверху на черном фоне и определяют концентрацию сульфат-ионов, сравнивая интенсивность по­мутнения пробы и шкалы стандартных растворов (табл. 8.14).

Приготовление основного стандартного раствора

0,091 г безводного сульфата калия растворяют в дистиллированной воде в мерной колбе на 100 мл (в 1 мл содержится 0,5 мг сульфатов).

2. Гравиметрическое определение - осаждение сульфатов в кислой среде хлоридом бария в виде сульфата бария. Метод применим в широ­ком диапазоне концентраций.

200 мл исследуемой воды помещают в химический стакан, прибавляют 2-3 капли индикатора метилового оранжевого и соляную кислоту до розовой окраски раствора. Смесь нагревают до кипения и упаривают до 50 мл. В горячий раствор при помешивании вносят 10 мл горячего 5%-ного раствора хлорида бария. После осветления раствора проверяют полноту осаждения, прибавляя 1-2 капли 5%-ного раствора хлорида ба­рия (отсутствие мути свидетельствует о полном осаждении сульфатов), и оставляют на сутки для «созревания» (при созревании происходит укруп­нение кристаллов сульфата бария, что необходимо для уменьшения по­терь при фильтровании). Затем приступают к отделению осадка от ра­створа. Для этого лучше использовать мелкопористый обеззоленный фильтр «синяя лента». Фильтр складывают вчетверо, вставляют в сухую и чистую воронку, расправляют, плотно прижимают к стенкам воронки и смачивают дистиллированной водой. Затем воронку с фильтром помеща­ют в кольцо штатива и, подставив под воронку чистый стакан, декантиру­ют (сливают) по стеклянной палочке жидкость на фильтр, стараясь не взмучивать раствор. Когда жидкость над осадком будет отделена, при­ступают к промыванию осадка. Для этого осадок в стакане промывают декантацией 2-3 раза небольшими порциями (15-20 мл) промывной жид­кости (100 мл дистиллированной воды, подкисленной 2 мл серной кислоты 1:3). Затем новыми порциями промывной жидкости переносят осадок на фильтр. Осадок на фильтре промывают 1%-ным раствором нитрата ам­мония до отрицательной реакции на хлорид-ион в промывной воде (по нит­рату серебра).

После этого воронку вместе с фильтром помещают в сушильный шкаф для высушивания (не следует пересушивать, иначе фильтр будет ломать­ся). Подсушенный осадок вместе с фильтром помещают в предваритель­но прокаленный и взвешенный тигель, ставят его в фарфоровый треуголь­ник и небольшим пламенем горелки обугливают фильтр, не допуская вос­пламенения. Затем тигель при помощи тигельных щипцов переносят в му­фельную печь и прокаливают при 700-800° С в течение часа, охлаждают в эксикаторе и взвешивают.

Расчет проводят по формуле:

– концентрация сульфат-иона, мг/л;

m 1 - масса тигля с осадком, г;

m 2 - масса пустого тигля, г;

V - объем воды, взятой для анализа, мл;

0,41 - коэффициент для пересчета сульфата бария на сульфат-ион.

8.2.3.9. Исследование качества воды водоемов методом автогра­фии на фотобумаге

Окислительно-восстановительные условия в почвах и илах оказывают заметное влияние на развитие растительного и животного населения этих субстратов.

В окислительной (аэробной) среде, достаточно увлажненной и содер­жащей свободный кислород, процессы минерализации органических ос­татков протекают быстро. При этом образуются полностью окисленные соединения, служащие пищей для растений, например нитраты, фосфаты, анионы многих других микроэлементов.

При малом содержании кислорода в субстрате развиваются восста­новительные (анаэробные) процессы. В этих условиях разложение остат­ков замедляется; в среде накапливаются восстановители, отрицательно влияющие на развитие растений. Однако временное состояние восста­новленности в почвах имеет и полезную сторону. Становятся подвижны­ми многие ранее не доступные растениям элементы - железо, марганец, а также ионы многих других микроэлементов. Происходит накопление аммонийных солей в почве, повышается активность многих почвенных ферментов (дегидрогеназ, пероксидаз и др.).

Таким образом, чередование аэро- и анаэробиозных условий в почве необходимо для нормального существования организмов, использующих почву как среду обитания. Длительный же анаэробиоз (как и аэробиоз) для них нежелателен.

Разложение органических остатков в почвах и илах происходит в ос­новном благодаря деятельности микроорганизмов, групповой состав ко­торых зависит от уровня окисленности среды. В связи с этим микроорга­низмы могут служить биоиндикаторами окислительно-восстановитель­ных условий в указанных субстратах.

В окисленных средах преобладают аэробы, для развития которых не­обходим кислород. В средах, где кислорода мало и содержатся восстано­вители (молекулярный водород, сероводород, закисные формы металлов), преимущественно развиваются анаэробы, для которых присутствие кис­лорода не обязательно или даже вредно. Анаэробы активны по отноше­нию к среде, потому что продукты их жизнедеятельности содержат вос­становители, накопление которых делает среду все более восстановлен­ной.

Количественное определение аэробов и анаэробов в субстратах воз­можно, но методически довольно сложно и выполняется, как правило, в специальных микробиологических лабораториях. Для оценки уровня окис­ленности (восстановленности) среды имеются более доступные методы. В частности, уровень восстановленности почвы, донных отложений и дру­гих субстратов можно ориентировочно определять с помощью апплика­ционного метода - автографии на фотобумаге.

Методика

Метод основан на восстановлении бромистого серебра, находящегося в эмульсии засвеченной фотобумаги, восстановленными веществами изу­чаемого субстрата. При этом в эмульсионном слое фотобумаги образует­ся множество частиц металлического серебра в виде черных и бурых пятен. Интенсивность окраски пятен тем больше, чем выше восстановленность среды в местах соприкосновения фотоэмульсии с почвой.

Поскольку восстановительные условия в придонных субстратах со­здаются во многом благодаря деятельности анаэробов, фотобумага тем самым регистрирует уровень активности этих микроорганизмов в грун­те. Аэробы цвета фотобумаги не изменяют, она остается практически белой.

Таким образом, одновременно определяется и уровень восстановлен­ности среды, и уровень активности анаэробных микроорганизмов в иссле­дуемом субстрате.

Восстановленные и окисленные участки на фотобумаге четко разли­чаются по цвету. Более темные пятна свидетельствуют о высокой кон­центрации восстановленных веществ - продуктов жизнедеятельности анаэробов. Слабоокрашенная поверхность на фотобумаге соответствует тем местам субстрата, где преобладают окислительные условия.

На отпечатках, называемых аппликациями, или автографиями, и полу­чаемых при исследовании почв, распределение окисленных и восстанов­ленных зон носит в основном очаговый характер. Черные восстановлен­ные участки фотобумаги, как правило, соответствуют скоплениям про­дуктов жизнедеятельности микроорганизмов вокруг мертвых органичес­ких остатков (например, соломы), где условия для развития анаэробов оказались благоприятными. Автографии илов обычно окрашены более равномерно.

Следует отметить, что исследования на искусственных средах с чис­тыми культурами анаэробных микроорганизмов показали, что различные их экологические группы создают разный уровень восстановленности среды. Так, сульфатредуцирующие бактерии, основу выделений которых составляет сероводород, окрашивают фотобумагу в черный или густо­коричневый цвет. Менее густая коричневая окраска пятен наблюдается в культурах клостридий, выделяющих метан, водород, ацетон и др. Еще сла­бее окраска фотобумаги в культурах плектридий.

Эти факты можно объяснить большой активностью сероводорода как восстановителя благодаря его хорошей растворимости (по сравнению, например, с молекулярным водородом или метаном) в воде.

Разумеется, в природных образцах почвы или ила потемнение фотобу­маги есть суммарный результат деятельности всех групп анаэробов, жи­вущих в них.

Аппликационный метод дает хорошие результаты при экологической диагностике почв техногенных территорий и при изучении состояния во­доемов по донным отложениям.

Промышленные выбросы в большинстве своем ядовиты для почвен­ных микроорганизмов. Так, например, выбросы, содержащие соединения азота, угнетающе действуют на процессы аммонификации и нитрифика­ции, способствуют созданию в почвах анаэробных условий, которые можно выявить с помощью фотоаппликаций.

В загрязненных прудах, озерах и реках, потерявших способность к са­моочищению, вода обеднена кислородом, а донные отложения представ­ляют собой ядовитый, сильно восстановленный субстрат, непригодный для жизни донных животных (например, червей, личинок комаров, поде­нок, ручейников).

При обследовании водоема аппликационный метод дает возможность выявить наиболее загрязненные его участки и выяснить причины загряз­нения.

Перед отбором проб необходимо провести визуальное изучение объекта исследования (участка реки, пруда и т. п.), определить и отметить на карте-схеме объекта наиболее загрязненные участки (выходы стоков заводов и ферм, отстойники и т. п.), относительно чистые и чистые (про­зрачная вода без запаха и пленок и т. п.).

Изучается водная и прибрежная растительность; при необходимости делается их гербарий. Отмечая на карте-схеме участки отбора, надо помнить одно правило: от частоты точек отбора зависят точность иссле­дования и объективность оценки экологического состояния объекта. Из одной намеченной точки отбора рекомендуется брать не менее 2-3 об­разцов на расстоянии 20-30 см друг от друга.

Усредненный образец ила помещается в целый плотный полиэтилено­вый пакет, в который заливается около 100 мл воды из обследуемого водоема. Пакет с образцом перевязывается, к нему прикрепляется эти­кетка (ее можно вложить в верхнюю часть пакета выше завязки), в которой указываются: дата и место отбора пробы, примерная глубина взятия образца, а также фамилия исследователя.

Пробы ила в зависимости от целей и задач исследования отбирают черпаком из поверхностного слоя непосредственно с берега или с лодки.

Техника определения уровня восстановленности субстрата с помощью автографии на фотобумаге состоит в следующем.

1. Образцы ила или почвы, взятые накануне, но не более чем за сутки до начала опыта, помещают в литровые или пол-литровые химические стаканы (или банки). Образцы почвы заливают дистиллированной водой, а илов - водой из исследуемого водоема до их полного насыщения. Для заполнения водой всех пор субстрата образцам дают выдержку около одного часа. Донные отложения должны быть покрыты примерно санти­метровым слоем воды.

2. Фотобумагу (глянцевую, тонкую, нормальную) нарезают в виде по­лос размером 4x9 см и после нумерации в соответствии с номерами об­разцов помещают вертикально во влажные образцы. Для этого торцом металлической линейки или ножом с широким лезвием делают в образце щель глубиной около 8,5 см и шириной 4-5 см, опускают в нее полоску фотобумаги, а затем ножом или линейкой прижимают субстрат к фотобу­маге. Не рекомендуется держать фотобумагу на свету более 15-20 ми­нут. Этого времени вполне хватит для се нарезки, маркировки и установ­ки в изучаемый субстрат.

3. После 72-часовой экспозиции фотобумагу извлекают из субстрата, быстро промывают в обычной, а затем дистиллированной воде, закрепля­ют в течение 5 минут в 25%-ном растворе гипосульфита и снова промы­вают.

4. Высушивают полоски на фильтровальной бумаге так, чтобы эмуль­сионный слой был сверху.

Чтобы результаты эксперимента с разными образцами можно было сравнивать, желательно пользоваться фотобумагой из одной и той же партии и закладывать ее в образцы на одно и то же время. Если образцы почвы или донных отложений взяты без нарушения их структуры, фото­бумага покажет кроме уровня восстановленности (густота окраски) еще и распределение восстановленных зон в образце.

8.2.4. Дополнительные методы

8.2.4.1. Вкус и привкус воды

Вкус и привкус воды, обнаруживаемые непосредственно в воде (или для водоемов хозяйственно-питьевого назначения после хлорирования), не должны превышать 2 баллов.

Вкус и привкусы оценивают как качественно, так и количественно по интенсивности в баллах. Различают четыре вида вкуса: соленый, горький, сладкий и кислый. Остальные вкусовые ощущения называют привкуса­ми: хлорный, рыбный, металлический и т.п. Интенсивность вкуса и при­вкуса определяют по 5-балльной шкале так же, как и запах.

Вкус и привкус определяют в сырой воде при комнатной температуре и 60°С. В воде открытых водоемов и источников сомнительных в сани­тарном отношении вкус воды устанавливают только после ее кипячения.

При исследовании в рот набирают 10-15 мл воды, держат несколько минут (не проглатывать!) и определяют характер и интенсивность при­вкуса.

8.2.4.2. Осадок

Осадок характеризуют по следующим параметрам: нет, незначитель­ный, заметный, большой. При очень большом осадке указывают толщину слоя в мм. По качеству осадок определяют как хлопьевидный, илистый, песчаный и т.п. с указанием цвета - серый, бурый, черный и др. Осадок в воде водоемов отмечают через 1 ч. после взбалтывания пробы, в воде подземных источников - через 24 ч.

В период выпадения осадка качественно описывают осветление - не­заметное, слабое, сильное, вода прозрачна.

8.2.4.3. Щелочность

Под щелочностью понимают способность некоторых компонентов, со­держащихся в воде, связывать эквивалентное количество сильной кисло­ты. Щелочность создают все катионы, которые в воде были уравновеше­ны гидроксид-ионами, анионами слабых кислот (например, карбонаты, гидрокарбонаты). Щелочность определяется количеством сильной кис­лоты, необходимой для замещения этих ионов. Расход кислоты эквива­лентен их общему содержанию в воде и выражает общую щелочность воды.

В обычных природных водах щелочность зависит в основном от присут­ствия гидрокарбонатов щелочноземельных металлов, в меньшей степени щелочных. В этом случае значение рН воды не превышает 8,3. Раствори­мые карбонаты и гидрокарбонаты повышают значение рН более 8,3.

Титриметрическое определение щелочности основано на титро­вании воды сильной кислотой. Количество раствора, необходимое для достижения рН 8,3, эквивалентно свободной щелочности, а для дости­жения рН 4,5 - общей щелочности. При рН меньше 4,5 ее щелочность равна нулю.

Конечную точку при титровании находят визуально. Щелочность, осо­бенно свободную, следует определять не позднее чем через 24 ч. после отбора пробы. Результаты выражают в ммолях эквивалентов на 1 л, что соответствует числу миллилитров 0,1 М раствора соляной кислоты, из­расходованной на титрование 100 мл исследуемой воды.

При визуальном определении мешает интенсивная окраска воды. Ее устраняют, прибавляя активированный уголь и фильтруя пробы. Мутные воды фильтруют через бумажный мелкопористый фильтр. Для более точ­ного определения щелочности предварительно вытесняют свободный уг­лекислый газ, продувая воздух, так как высокие концентрации диоксида углерода мешают обнаружить переход окраски при титровании.

Для анализа потребуется:

1. Раствор соляной кислоты (0,1 M), который можно приготовить не из фиксанала, а из приблизительной концентрации с последующим определением поправочного коэффициента к 0,1 М раствору НС1 по карбонату натрия. Поправочный коэффициент К рассчитывают по формуле:

где V - объем 0,1 н. раствора соляной кислоты, израсходованной на титрование 20 мл 0,1 н. раствора карбоната натрия.

2. Фенолфталеин, 0,5% раствор. В 50 мл 96%-ного этилового спирта растворяют 0.5 г фенолфталеина и разбавляют 50 мл дистиллированной воды, добавляют по каплям 0,01 М раствор гидроксида натрия до появле­ния заметной розовой окраски.

3. Метиловый оранжевый, 0,05% водный раствор.

Свободная щелочность. Ход определения. Отмеряют 100 мл иссле­дуемой воды (при высокой щелочности берут меньший объем и разбавля­ют до 100 мл прокипяченной и охлажденной дистиллированной водой), при­бавляют 2 капли 0,5% фенолфталеина и титруют на белом фоне 0,1 М раствором соляной кислоты до полного обесцвечивания.

Общая щелочность. Отмеривают 100 мл пробы, прибавляют 2 капли метилоранжа, затем продувают воздух в течение 2-3 мин. и титру­ют 0,1 М раствором соляной кислоты на белом фоне до начала перехода окраски метилового оранжевого из желтой в оранжевую. Вновь продува­ют воздух 2-3 мин., и если возвращается первоначальная окраска, то дотитровывают. Титрование считают законченным, если после продувания воздуха окраска раствора не меняется.

Расчет свободной (С) и общей (Об) щелочности (ммоль эквивалентов в литре) производят по формулам:

где А - объем 0,1 М раствора соляной кислоты, израсходованной на титрование по фенолфталеину, мл;

где В - объем 0,1 М раствора соляной кислоты, израсходованной на титрование по метиловому оранжевому, мл;

К - поправочный коэффициент к 0,1 М раствору НСl;

V - объем пробы воды, взятый для анализа, мл.

Общая и свободная щелочность находятся в зависимости от ко­личественного соотношения гидрокарбонат-, карбонат- и гидроксид-ионов. По величине свободной и общей щелочности можно косвенно вычислить количество этих ионов.

Расчет основан на предположении, что щелочность вызывается в ос­новном ионными формами диоксида углерода и в меньшей степени гидроксид-ионами. Расчет дает приблизительные результаты. В зависимости от соотношения свободной (С) и общей (Об) щелочности возможны сле­дующие случаи расчета.

Величина свободной щелочности равна концентрации карбонат-ионов (ммоль-экв./л). Умножая значение свободной щелочности на 30 (эквива­лент карбонат-иона), получаем содержание карбонат-ионов (мг/л).

Величина общей щелочности равна величине концентрации гидрокар­бонат-ионов (ммоль-экв./л). Умножая значение общей щелочности на 61 (эквивалент гидрокарбонат-иона), получаем содержание гидрокарбонат-ионов (мг/л) (табл.8.15).

8.2.4.4. Кислотность

Кислотностью называется содержание в воде веществ, вступающих в реакцию с гидроксид-ионами. Расход гидроксида выражает общую кис­лотность воды. В обычных природных водах кислотность в большинстве случаев зависит только от содержания свободного углекислого газа. Ес­тественную часть кислотности создают также гуминовые и другие сла­бые органические кислоты. В этих случаях рН воды не бывает ниже 4,5.

Кислотность воды определяют титрованием раствором сильной щело­чи. Количество титрованного раствора, израсходованного до получения рН 4,5, соответствует свободной кислотности; количество же, израсходо­ванное до получения рН 8,3, - общей. Если рН > 8,3, то се кислотность равна 0. Для определения кислотности воду титруют 0,1 М раствором NaOH. Конец титрования определяют визуально. Кислотность выражают в ммоль эквивалентов на 1 л. Определению мешает свободный хлор. Его устраняют добавлением тиосульфата натрия.

Свободная кислотность. < 4,5 (кис­лая реакция по метиловому оранжевому), т.е. проба содержит свободную кислоту. К 100 мл пробы добавляют 2 капли раствора метилового оранже­вого и титруют на белом фоне 0,1 н. раствором NaOH до появления жел­той окраски индикатора.

В загрязненных водоемах может содержаться большое количество сильных кислот или солей за счет сброса промышленных сточных вод. В этих случаях рН может быть ниже 4,5. Часть общей кислотности, снижа­ющей рН ниже 4,5, называется свободной.

Кислотность воды определяют титрованием раствором сильной щело­чи. Количество титрованного раствора, израсходованного до получения рН 4,5, соответствует свободной кислотности; количество же, израсходо­ванное до получения рН 8,3, - общей. Если рН > 8,3, то ее кислотность равна 0. Для определения кислотности воду титруют 0,1 М раствором NaOH. Конец титрования определяют визуально. Кислотность выражают в ммоль эквивалентов на 1 л. Определению мешает свободный хлор. Его устраняют добавлением тиосульфата натрия.

Свободная кислотность. Она определяется, если рН пробы < 4,5 (кис­лая реакция по метиловому оранжевому), т.е. проба содержит свободную кислоту. К 100 мл пробы добавляют 2 капли раствора метилового оранже­вого и титруют на белом фоне 0,1 н. раствором NaOH до появления жел­той окраски индикатора.

Общая кислотность. Пробу объемом 100 мл титруют в присутствии 3 капель раствора фенолфталеина 0,1 М раствором едкого натра до появ­ления розовой окраски индикатора, не исчезающей в течение 1 мин.

Расчет свободной (С) и общей (Об) кислотности (ммоль-экв./л) прово­дят по формулам:

где А - объем 0,1 М раствора NaOH, израсходованного на титрование по метиловому оранжевому, мл;

В - то же по фенолфталеину, мл;

V - объем пробы воды, взятый для определения, мл.

К - поправочный коэффициент к 0,1 М раствору NaOH, определяемый по формуле:

где V - объем 0,1 н. раствора соляной кислоты (из фиксанала), из­расходованной на титрование 20 мл 0,1 н. раствора гидроксида натрия, мл.

8.2.4.5. Свинец

Свинец является одним из основных загрязнителей окружающей сре­ды. Он обладает способностью поражать центральную и периферичес­кую нервную систему, костный мозг и кровь, сосуды, генетический аппа­рат, нарушает синтез белка, вызывает малокровие и параличи. Большая концентрация свинца тормозит биологическую очистку сточных вод. Ос­новными источниками загрязнения свинцом являются выхлопные газы автотранспорта и сточные воды различных производств.

Допустимая концентрация свинца в воде - 0,03 мг/л.

Обнаружение ионов свинца

Качественное определение с родизонатом натрия. На лист фильт­ровальной бумаги нанести несколько капель исследуемого раствора и до­бавить 1 каплю свежеприготовленного 0,2% раствора родизоната натрия. В присутствии ионов свинца образуется синее пятно или кольцо. При до­бавлении 1 капли буферного раствора синий цвет превращается в крас­ный. Реакция очень чувствительна: обнаруживаемый минимум 0,1 мкг.

Ошкай Роман Михайлович

"Как выбирать овощи и фрукты, чтобы вместо пользы не получить от них вреда. Можно ли определить, есть ли в продуктах нитраты. А если есть, то как избавиться от них или хотя бы уменьшить их количество".

Данная работа показывает вредные вещества, содержащиеся в полезных продуктах, а также раскрывает методы определения нитратов в продуктах.

Скачать:

Предварительный просмотр:

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ

ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №25»

Школьный конкурс исследовательских и проектных работ

Учащихся 1-11 классов

«Ступени познания»

СЕКЦИЯ:

ПРОСТЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ НИТРАТОВ В ПРОДУКТАХ

ОШКАЙ РОМАН

Ученик 3 А класса

Научный руководитель:

Учитель начальных классов

В.П. Вержакова

Набережные Челны

2012

Введение ……………………………………………………………………………..3

Глава 1. Что такое нитраты…………………………………………………………5

Глава 2. Как уменьшить содержание нитратов……………………………………7

Глава 3. Определение содержания нитратов……………………………………..10

Выводы…… ……………………………………………………………………......12

Заключение………………………………………………………………………….13

Список используемой литературы ……………………………………………......14

Приложение…………………………………………………………………………15

ВВЕДЕНИЕ

На протяжении всей жизни нам говорят: ешьте овощи и фрукты, они полезны, в них много витаминов и минералов. Эти продукты содержат вещества, которые помогают организму усваивать пищу. Овощи и фрукты – основные поставщики клетчатки, играющей важную роль в работе желудочно-кишечного тракта, нормализации жирового обмена, выведении из организма ненужных веществ. Употребление овощей и фруктов повышает иммунные свойства организма и позволяет противостоять болезням. Многие овощи и фрукты имеют лечебное действие и с успехом применяются в лечебных диетах. В дневном рационе питания обязательно должны в достаточном количестве присутствовать овощи и фрукты. В отличие от лекарственных средств лечебные компоненты овощей и фруктов не наносят вреда организму. Исследования показывают, что ежедневное употребление овощей и фруктов в рекомендуемом медициной количестве может продлить жизнь человека более чем на 10 лет. Недаром народная медицина насчитывает сотни рецептов с использованием овощей и фруктов для лечения самых разнообразных недугов. Овощи и фрукты полезней употреблять в свежем виде. Особенно важны овощи и фрукты для детей, так как содержат много необходимых компонентов для развития и роста. Потребляя больше овощей и фруктов, человек имеет шанс прожить дольше.

Полезные свойства овощей и фруктов известны довольно давно. Каждый употребляемый в пищу продукт может приносить организму как пользу так и вред. Определить значение и пользу различных продуктов в своей жизни и в питании должен каждый человек.

Сегодня мне хочется поговорить о вредных веществах, содержащихся в полезных продуктах. И моя тема: Простые методы определения нитратов в продуктах.

Как выбирать овощи и фрукты, чтобы вместо пользы не получить от них вреда. Можно ли определить, есть ли в продуктах нитраты. А если есть, то как избавиться от них или хотя бы уменьшить их количество. Думаю этот вопрос также важен для нашего здоровья, как и вопрос употребления овощей и фруктов.

Для раскрытия темы необходимо проделать следующее:

  • Изучить литературу
  • Поставить эксперимент
  • Сделать выводы

Изучение литературы поможет разобраться в теоретических вопросах снижения количества нитратов в продуктах;

поставив эксперимент, можно увидеть какие овощи содержать нитраты больше положенного. Для этого я возьму некоторые овощи из обычного нашего рациона и с помощью родителей сделаю несложные опыты.

А потом решим, какие лучше употреблять продукты, чтобы не нанести вреда своему здоровью.

ГЛАВА 1

ЧТО ТАКОЕ НИТРАТЫ

Нитраты - это соли азотной кислоты (селитра), которые находятся в овощах и фруктах, они существовали еще до происхождения человека. Без них жизнь невозможна. Нитраты необходимы, ведь без них не произойдет синтез белка. Но, если нитратов в овоще или фрукте много – он становится опасным для здоровья человека. Таким образом, проблема не в них, а в количестве, которое попадает в организм человека.

Для того чтобы урожайность не падала, в землю вносят удобрения. И это происходит из года в год, десятилетиями. А теперь химикатов накопилось в земле так много, что потребуется несколько десятилетий, чтобы они разложились. И еще столько же, чтобы почва снова стала плодородной.

Растения обладают способностью поглощать из насыщенной удобрениями почвы гораздо больше соединений азота, чем им необходимо для развития. Если в почве избыток нитратов, то они не успевают полностью превратиться в аминокислоты. Нитраты по корню поднимаются и могут осесть в любой части растения (плоды, корни, стебли и листья). Они превращаются в нитриты и отравляют организм. В результате чего только часть нитратов преобразуются в растительные белки, а остальные нитраты появляются на нашем столе “в чистом виде”, находясь в овощах.

А организм человека по-разному воспринимает их и это зависит от состояния здоровья. Одни нитраты быстро выводятся из тела, другие образуют безвредные и даже полезные химические соединения, третьи - как говорят химики, “восстанавливаются”, то есть превращают соли снова в азотную кислоту. А это опасно! Именно нитраты вступают в реакцию с гемоглобином в крови и лишают красные кровяные тельца возможности насыщать клетки кислородом. В результате нарушается обмен веществ, страдает нервная система, ослабевают защитные функции организма.

Но все не так страшно, как кажется. Согласно заключению Всемирной организации здравоохранения, безопасным считается количество 5 мг нитратов на 1 кг человеческого тела, т. е. взрослый человек может получить около 350мг нитратов без отрицательных последствий для здоровья.

Следует знать, в каких частях растения нитратов особенно много. Например, у капусты - в листьях, у моркови - в сердцевине, у перца - в верхней семенной части. У картофеля, огурцов, кабачков - в кожуре, у редиски - в хвостике. У салата, укропа, петрушки - в стеблях и листочках, у арбузов и дынь - в коре. В угрожающих размерах количество нитратов возрастает в сухофруктах.

Как же можно уменьшить их количество?

Несколько слов о фруктах. Ешьте их свежими, а не в виде пюре и соков. Имейте в виду, что витамины, фенолы, хлорогенная кислота и пр., содержащиеся во фруктах и овощах, нейтрализуют содержание нитратов. Но они погибают при тепловой обработке, оставляя только нитраты. Эту потерю можно частично возместить: чай и аскорбиновая кислота выводят селитру из организма.

Если соблюдать некоторые правила, то и без специальной обработки можно немного уменьшить их количество.

Самые эффективные - замачивание и варка, потому что соли азотной кислоты растворяются в воде. Но этот способ годится не для всех видов овощей.

Но мы не можем определить количество нитратов в овощах без специальных приборов. А вот в домашних условиях можно обезопасить себя, зная несколько способов.

Об этом мы и поговорим в следующей главе.

ГЛАВА 2

КАК УМЕНЬШИТЬ СОДЕРЖАНИЕ НИТРАТОВ

Нужно знать, где «живут» нитраты. Тогда легко можно себя от них защитить.

  1. Мойка овощей.

Для начала приведем небольшой пример. Что делает хорошая хозяйка, если, не дай Бог, пересолила рыбу? Правильно. Вымачивает ее в воде, и лишняя соль уходит. Отсюда вывод - вода способна вытягивать из продуктов соли. Согласны? А нитраты – это соли азотной кислоты. Значит, по такому же принципу можно уменьшить содержание нитратов в овощах, после вымачивания овощей останутся нитраты в воде. У овощей обрежьте «хвостики» и корешки и залейте их чистой водой. Вымачивать овощи нужно около часа-двух, после такого «купания» в воде останется около четверти всех нитратов, эту воду нужно слить. Некоторые люди, заливают овощи еще раз и оставляют на ночь. К сожалению, такие меры предосторожности ни к чему не приведут, ведь вместе с нитратами «вымоются» все витамины, а у овощей не останется вкуса. Надо искать золотую середину!

  1. Кулинарная обработка .

Наиболее действенный способ нейтрализации нитратов – кулинарная
обработка продуктов. Обработка овощей в домашних условиях (варка, тушение, жаренье), способствует снижению содержания нитратов в продуктах. Мойка и очистка овощей снижает содержание нитратов на 10 – 15%, а после очистки клубней – на 43 – 66%.

Если нет уверенности, что овощи прошли санитарный контроль на выявление нитратов, необходимо капусту, картофель, свеклу отварить. При варке содержание вредных соединений существенно снижается. Овощи не варят впрок, а специи и соль добавить в конце варки. Можно овощи бланшировать, с помощью этого способа в капусте можно уменьшить концентрацию нитратов на 10 – 86%.

Для приготовления овощей лучше использовать эмалированную посуду. При жарке картофеля количество нитратов уменьшается на 15%, а во фритюре на 40%.

3. Хранение овощей .

На концентрацию нитратов влияют сроки хранения. Исследования показали,
что после 6 месячного хранения их количество в корнеплодах снижается в 1,5– 2 раза. При долгом хранении овощей содержание опасных веществ понижается. В овощах, которые пролежали зиму, не находят нитратов и нитритов.

4. Эффективно и консервирование.

Доказано, что в консервированных огурцах с добавлением уксуса уже на вторые сутки уменьшается содержание нитратов более чем на 20% от начального уровня, а нитриты после семи дней совсем не обнаруживаются.

Количество этих опасных солей уменьшается при засолке овощей. Малое содержание их в малосольных огурцах. Но, когда огурцы хорошо засолятся, в них повышается содержание нитритов. Лучше в летне-осенний сезон огурцы солить в небольших емкостях, чтобы есть их могли, когда они еще малосольные.

Очень интенсивно разрушаются нитраты в квашеных овощах, уже в первые семь дней резко падает их содержание.

5. Переработка овощей.

Знайте, что нитраты неравномерно скапливаются в свежих овощах: в моркови и капусте – внутри, а в огурцах и картофеле – в основном ближе к поверхности. В капусте снимайте верхний покров и выкидывайте кочерыжки. Да, хочется иногда побаловать ребенка вкусной кочерыжкой, но стоит ли?

А с огурцов и картофеля удалять кожуру более толстым слоем. Кстати, маленькие огурцы содержат нитратов меньше, чем большие. Если огурец сорван утром - нитратов меньше.

Весной начинают продавать шпинат, зеленый лук, редис, салат, выращенных в теплице. Эти овощи перед едой рекомендуют положить в воду на пару часов и менять ее несколько раз: нитраты и нитриты выходят в промывную воду. Такие овощи следует хранить в холодильнике.

Помидоры труднее всего отделить от нитратов. Лучше употреблять томаты полной зрелости. Чем больше созрели овощи, тем меньше в них нитратов.

У арбузов и дынь срезайте кору толстым слоем. Повышенное содержание нитратов в арбузах можно узнать по желтым прожилкам и уплотнениям в мякоти. Так же, когда кушаете бахчевые культуры не жалейте оставлять мякоть около корки – именно там больше всего нитратов!

Еще одна рекомендация. Известно, что витамины С (аскорбиновая кислота), Е и А тормозят и предотвращают преобразование нитратов в организме. И если вы будете всегда пить витаминные комплексы, включать в пищу продукты, содержащие витамины А, С, И, Е, вы защитите свой организм от попавших в него нитратов.

ГЛАВА 3

ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ НИТРАТОВ

Есть продукты, которые мы ежедневно употребляем в пищу. Это вода, овощи, фрукты. Очень интересно, после изучения теории, увидеть какие же наши повседневные продукты содержат или нет нитраты.

Проведем 3 эксперимента.

Эксперимент № 1. Определение нитратов в арбузах.

Идем в магазин и покупаем самый обыкновенный арбуз.

Есть несколько способов определить, есть ли в арбузе нитраты. Опускаем целый арбуз в емкость с водой. Если он плавает на поверхности – значит, в нем нет нитратов, а если он тонет – он напичкан нитратами. Проделав все это, мы видим, что, похоже, в нашем арбузе нитратов нет!

Но давайте проверим еще раз, другим методом. Взяли кусочек арбуза и поместили его в чистую воду на 20-30 минут. Если в нем есть нитраты, то по истечении этого времени вода должна окраситься в красный или розовый цвет. Что же, и этот опыт показал, что в нашем арбузе нет нитратов. Вода не окрасилась, а просто немного помутнела.

Эксперимент № 2. Определение нитратов в картофеле.

Посмотрим. Есть ли нитраты в картофеле. Для определения качества картофеля также существует очень простой метод. Достаточно разрезать плод и понаблюдать за ним пару минут. Если через несколько минут плод сильно потемнеет, значит, в нем содержится большое количество нитратов. Если картофель на срезе остается белым, то он полностью безопасен.

Для сравнения возьмем картофель с нашего огорода (№1) и купленный на рынке (№2).

Разрезали, положили, ждем – что произойдет. Через двадцать минут видим результат. Картофель, купленный на рынке, покрылся темным налетом. Значит, в нем присутствуют нитраты. А ведь мы его купили много – запас на зиму.

Смотрим на картофель с собственного огорода – а он практически не изменился. Значит, здесь нитратов нет.

Вывод – ешьте овощи с собственной грядки.

ВЫВОДЫ

В результате 1 –го эксперимента можно сделать следующий вывод.

Каждый человек, заботящийся о своем здоровье, простым способом может определить, присутствуют нитраты в арбузе или нет. Опустив кусочек арбуза в обыкновенную воду, мы увидели, что вода цвет не поменяла, а это говорит о том, что нитратов в нашем арбузе нет.

Второй эксперимент показал, что наличие нитратов в картофеле можно определить путем простого опыта, не требующего дополнительных затрат. Достаточно разрезать картофель и подождать, пока произойдет реакция с воздухом и картофель поменяет цвет. Эта реакция и говорит о присутствии нитратов в картофеле.

ЗАКЛЮЧЕНИЕ

Нашему организму необходимы овощи, которые являются источниками углеводов, макро- и микроэлементов, волокнистых и других важных веществ. Поэтому их употреблять в пищу нужно каждый день.

Покупая овощи на рынке или в магазинах, мы не можем полностью быть уверены, что они были проверены на наличие опасных соединений - нитратов.

Каждый, кто интересуется вопросами здоровья, может самостоятельно определить, есть ли нитраты в овощах и фруктах, скажем, купленных тепличных огурцах.

На 100% избавиться от нитратов в овощах и фруктах, во-первых, не получиться, во-вторых, не стоит. Вместе с нитратами уйдут или погибнут и все полезные микроэлементы и витамины. Вы можете только уменьшить количество вредных веществ.

Витамины С (аскорбиновая кислота), Е и А тормозят и предотвращают преобразование нитратов в организме.

В заключение можно сказать, что при использовании даже небольшой части рекомендаций из нашего разговора можно в значительном объеме обезопасить себя и своих близких от последствий воздействия данных опасных соединений на организм.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

  1. Гайлите М., Гайлитис М. Ещё раз о нитратах, «Наука и мы», № 6, 1990 г.
  2. Мугниев А.Ф., Посмитная И.В., Содержание нитратов в овощах можно регулировать. Картофель и овощи. 2001г., №1.
  3. Покровская С.Ф. Пути снижения содержания нитратов в овощах. М., 2003г., с.42-46.
  4. Соколов О.А. Особенности распределения нитратов и нитритов в овощах. Картофель и овощи., 1998г., №6.
  5. Соколов О., Семёнов В., Агаев В., Нитраты в окружающей среде. Пущино, 2004г., с.216-238

нитрат нитрит продукт питание

Определить по внешнему виду содержание нитратов в овощах и фруктах трудно или вообще невозможно. У вегетирующих (с листьями и стеблями) растений по интенсивности зеленой окраски листьев и черешков, особенно нижних ярусов, можно лишь ориентировочно судить: чем она темнее, тем больше нитратов в них содержится. При осмотре клубней картофеля, корнеплодов, плодов, ягод это сделать еще труднее. Агробиологи советуют при покупке овощей и фруктов выбирать не самые красивые плоды. В блестящих, как будто искусственных плодах нитратов, как правило, предостаточно. Замечено, что корнеплоды моркови одного сорта, но имеющие более яркую окраску, содержат нитратов меньше, чем корнеплоды, окрашенные менее интенсивно. Зеленые стручки фасоли содержат нитратов больше, чем желтые. Сходная зависимость между окраской и содержанием нитратов наблюдается у сортов сладкого перца. В арбузах и дынях много нитратов под коркой и в незрелых плодах. В сочных перезревших арбузах наличие нитратов легко определить по пустотам в мякоти, из которых выпадают семена.

В аналитической химии известно несколько методов качественного определения нитратов и нитритов в растворе.

1. На часовое стекло поместить три капли раствора дифениламина, пять капель концентрированной серной кислоты и несколько капель исследуемого раствора. В присутствии нитрат- и нитрит-ионов появляется темно-синее окрашивание.

2. К 10 мл исследуемого раствора прибавить 1 мл раствора, состоящего из 10%-го раствора реактива Грисса в 12%-й уксусной кислоте, и нагреть до 70-80 °С на водяной бане. Появление розового окрашивания свидетельствует о наличии нитрит-ионов.

Приготовление реактива Грисса. Реактив состоит из двух растворов.

Первый - растворить 0,5 г сульфаниловой кислоты при нагревании в 50 мл 30%-го раствора уксусной кислоты.

Второй - прокипятить 0,4 г a-нафтиламина в 100 мл дистиллированной воды. К бесцветному раствору, слитому с сине-фиолетового осадка, прилить 6 мл 80%-го раствора уксусной кислоты.

Перед применением оба раствора смешать в равных объемах.

3. К 10 мл исследуемого раствора прилить 10-15 капель щелочи, добавить 25-50 мг цинковой пыли, полученную смесь нагреть. Нитраты восстанавливаются до аммиака, который обнаруживается по покраснению фенолфталеиновой бумаги, смоченной в дистиллированной воде и внесенной в пары исследуемого раствора.

4. Оригинальные методы для определения нитратов и нитритов предложены А.Л.Рычковым (1-й Московский медицинский институт имени И.М.Семашко). Для их проведения можно воспользоваться аптечными препаратами: риванолом (этакридина лактат), физиологическим раствором (0,9%-й раствор хлорида натрия в дистиллированной воде), антипирином (1-фенил-2,3-диметилпиразолон-5).

Риванольная реакция. К 1 мл исследуемого раствора прибавляют 1 мл физиологического раствора и смешивают с 1 мл риванольного раствора (таблетку риванола растворяют при нагревании в 200 мл 8%-й соляной кислоты). Если появится бледно-розовая окраска, значит, уровень нитратов и нитритов в питьевой воде недопустим.

Антипириновая реакция. Антипирин в присутствии 50 мг/л нитритов образует нитропроизводное, окрашенное в салатовый цвет. Если в растворе присутствуют следы дихромата калия, то чувствительность реакции сильно возрастает, и при содержании нитритов более 1,6 мг/л появляется розовая окраска.

Для проведения этого анализа 1 мл питьевой воды смешивают с 1 мл физиологического раствора (концентрация нитритов при таком разведении уменьшается вдвое), добавляют 1 мл раствора антипирина (1 таблетку антипирина растворяют в 50 мл 8%-й соляной кислоты) и быстро 2 капли 1%-го раствора дихромата калия. Смесь нагревают до появления признаков кипения. Если в течение 5 мин раствор становится бледно-розовым, то в нем содержится более 1,6 мг/л нитрит-ионов, а в анализируемой питьевой воде их вдвое больше. В этом случае содержание нитрит-ионов превышает предельно допустимую концентрацию.

Количественное определение суммарного содержания нитратов и нитритов проводят с помощью реактива Грисса, переведя предварительно нитраты в нитриты цинковой пылью в кислой среде при рН = 3. Затем 10 капель исследуемого раствора подкисляют 10 каплями уксусной кислоты и прибавляют 8-10 капель реактива Грисса. Через 5-10 мин появляется розовое или красное окрашивание.

Для определения количественного содержания нитрит-ионов используют серию стандартных растворов. Сначала готовят основной раствор, содержащий 1000 мг нитратов в литре. С этой целью 1,645 г нитрата калия, высушенного до постоянной массы при температуре 105 °С, растворяют в 1 л дистиллированной воды в мерной колбе. Из основного раствора готовят рабочие стандартные растворы (в день проведения анализа) с содержанием 100, 50, 25 и 10 мг/л разбавлением его соответственно в 10, 20, 40 и 100 раз. При проведении анализа с градуировочным раствором проводят те же операции, что и с анализируемой пробой. Затем интенсивность окраски исследуемого образца сравнивают с окраской эталонных растворов визуально или на фотоэлектроколориметре.

Большинство из нас каждый день употребляет в пищу овощи и фрукты. Чтобы наполнить рынок столь востребованным продуктом, аграрии прибегают к использованию минеральных удобрений. Эти добавки не являются полезными для организма человека, а определить их наличие "на глаз" не получится.

Как определить содержание нитратов в продуктах

Самой распространенной добавкой является нитрат азота. Овощи и фрукты с нитратами внутри выглядят точно так же, как и натуральные. Например, некоторые эксперты советуют покупать продукты не самой первой свежести. Однако, этот метод не отличается своей надежностью: проверка той же моркови весьма затруднительна из-за яркого окраса. При этом многие наверно уже слышали, что нитраты могут преобразоваться в канцерогенные вещества в процессе приготовления пищи. Именно поэтому были разработаны, позволяющие более ли менее точно определить содержание нитратов. Эти способы разделяются на:

  1. предполагающие лабораторный анализ;
  2. те, что можно провести на месте.

Лабораторные методы проверки на нитраты

В первом способе измеряют химический состав продуктов посредством реагентов. Эти вещества, содержащиеся в специальных емкостях, впоследствии наносятся на проверяемый продукт. Если вредные нитраты имеются в наличии, то должна произойти определенная химическая реакция - часть овоща (фрукта) может стать цветной, окраситься в насыщенный синий. В частности, чтобы проверить продукты на присутствие вредных пестицидов, необходимо сделать раствор по следующему рецепту: серную кислоту аккуратно смешать с дифениламином в соотношении 5 к 3.

Если же этих препаратов под рукой нет, то, возможно, найдутся другие. Например, в домашних условиях применяется следующий рецепт раствора: капли щелочи (10 достаточно) необходимо смешать с 30 мг цинковой пыли. Также понадобится фенолфталеиновая бумага. Проверка будет выглядеть следующим образом:

  1. в готовый раствор помещается фрукт или овощ;
  2. затем происходит их нагревание;
  3. дистиллированной водой увлажняется бумага и помещается возле продуктов;
  4. если допустимые нормы количества вредных веществ превышены, то бумага окрасится в красный цвет.

Это довольно хлопотные методы, однако для определения содержания пестицидов существуют способы и попроще.

Измерения посредством нитрат-тестеров

Цена прибора, конечно, довольно высока, но этот бытовой аппарат позволяет осуществить проверку продукта на качество прямо возле прилавка. Понадобится незаметно воткнуть в него измеряющий тестер, чтобы электронный датчик показал значение содержащихся в овоще или фрукте нитратов. Кроме того, данный тест позволяет узнать, насколько превышена норма.

Как определить нитраты в домашних условиях: тест-полоска и нитратомер

Данный тест рекомендуется проводить у себя дома, поскольку полоску необходимо помещать внутрь овоща (фрукта). Продукт следует разрезать пополам и приложить к нему тест-полоску. Изменение ее окраски будет красноречиво свидетельствовать о наличии вредных компонентов. Например, если вы почувствовали плохой вкус картофеля или вовремя обнаружили гниль на корнеплодах, то, скорее всего, предельно допустимое значение нитритов было превышено. Чтобы убедиться в этом, выполните следующие действия:

  1. разрежьте картофелину пополам;
  2. между половинками вставьте полоску и плотно зажмите;
  3. спустя несколько секунд нитратомер можно удалить;
  4. через минуту следует сопоставить полученный оттенок с цветной палитрой на инструкции;
  5. о превышении нормы будет сигнализировать красно-фиолетовый цвет.

Народные методы определения нитратов

К этим методам не стоит относиться слишком серьезно, поскольку они являются слишком субъективными, и нет единого способа проверки для всех продуктов. Например, белые прожилки или слабые вкусовые качества таких летних плодов, как арбуз или дыня, могут из-за того, что их рано сорвали, а не потому, что там нитриты. Скоропортящиеся огурцы являются более весомым доказательством, однако, они редко до этого момента доживают. Их используют в пищу быстрее. Цвет зелени может быть очень ярким из-за почвы, а габариты капусты могут быть внушительными по вполне естественным причинам роста на грядке.

Выведение вредных веществ

Избавиться от них довольно легко. На 10-15% можно уменьшить содержание нитратов, если овощи или зелень предварительно вымачивать в воде. С огурцов при этом срезается кожица. При варке выводятся до 80% (если повар избавится от воды, поскольку в бульоне они остаются). Жарка позволяет снизить содержание нитратов на 10%.

В качестве заключения приведем показатели нормы предельно допустимой концентрации нитратов для некоторых продуктов:

  • в яблоках допускается содержание до 60 мг/кг;
  • в цитрусовых (апельсине, мандарине, лимоне) - до 100 мг/кг;
  • в помидорах - до 200 мг/кг;
  • в бананах - до 200 мг/кг;
  • в огурцах - до 300 мг/кг;
  • в ранней моркови - до 400 мг/кг;
  • в капусте – до 600 мг/кг.

Обсуждение

как все нормано.

30.07.2018 16:31:43, айгуль

Комментировать статью "Как определить наличие нитратов в овощах и фруктах"

Муж купил прибор, который измеряет нитраты. измерение нитратов проводят на специальном приборе нитратомере, который постоянно колибруют и измерения проводят с использованием алюмокалиевых квасцов. Как определить наличие нитратов в продуктах.

Обсуждение

Я покупаю готовое детское питание Heinz, ребенку очень нравится. Я в основном беру каши, пюре, соки, пару раз покупала Детское печеньице с бананом и яблоком и пудинги. Недавно, вот, решила взять Овощной супчик с курочкой, малышка поела с огромным удовольствием. В следующий раз хочу взять Борщик с говядинкой.

Не знаю. По мне, что б не морочиться, легче с банками. А по факту.... Моя их не ест. Совсем. Вот все что у меня в тарелке лежит, это ест. Мну вилкой и даю. Уже три месяца так. Фрукты исключительно целиком. Я держу, она грызет. Правда многое потом практически в целом виде и выходит. Но гомогенизированные кашки, пюрешки, выплевывает сразу

Как избавиться от нитратов. Питание, введение прикорма. Ребенок от рождения до года. 3.Кожицу ранних плодов лучше всегда очищать, так как именно в ней скапливаются пестициды. От нитратов в молодой картошке можно частично избавиться, если очищенные корнеплоды...

Обсуждение

делать вам нефик) от всего не убережешься!
Кстати, сегодня вычитала, оказывается кабачок не переносит зморозки.. вот так.. а мы его намораживаем)))
И еще прочитала, что козье молоко нифига и не лучше коровьего, менее аллергенное, да, но не одно, не другое, ни лучше - ни хуже, они разные, с разным набором микроэлементов и витаминов, вот так вот аказуется)

про нитраты в прикорме. Питание, введение прикорма. Ребенок от рождения до года. про нитраты в прикорме. Доброго времени суток. Я в основном читатель, но т.к. не нашла ответа на свой вопрос, вынесу его в отдельную тему. Как определить наличие нитратов в продуктах.

Обсуждение

Меня тоже не устраивает качество продуктов в магазине и вообще я до года только детским питанием планирую ребенка кормить. Бабушкино лукошко не едим, едим Хайнц в основном, хорошие пюрешки)))

Вот мне всегда было интересно, ближе к кожуре нитратов больше, чем в середине? Я всегда счищаю бобольше кожуру со всего, вот у вас есть аппаратик такой, вы не замеряли, есть ли разница?

Подскажите, кто имеет опыт борьбы с вредностями в продуктах, что лучше выбрать? Нитрат тестер?

а как вы определили что 4 ложки это как в море? ТЕм более что НИКТО ВАм не доказал, что у ребенка "пищевая" аллергия, скорее всего явно НЕ пищевая... Рассуждения про " нитраты " я вообще считаю детским лепетом...

Обсуждение

ого. мож нам тож куды-нить податься... а то нам АКДС таааакую алллергию вызвало, что мне заплохело.



Из всего этого напрашивается 2 вывода.
1) Купайте в МОРСКОЙ СОЛИ! Купите "пищевую" порскую соль (без красителей-ароматизаторов), делайте крепкий раствор в ванной (ну как на море) и купайте...
2) Питайтесь нормально. Больше овощей и фруктов, особенно "гипоалергенных" - кабачки, цв.капуста, броколли, тыква, яблоки, бананы, огурцы и пр и др. Помидоры, виноград - тоже можно. Мясо всех видов в любой изготовлении, все крупы, салаты нормально со сметанкой и проч...

А вообще - как определить - с нитратами овощи\фрукты, или нет? согласна. все индивидуально, бесспорно. в случае нашей аллергии, который я подчеркнула, действительно, лучше "сглаживать" общесуммарное количество веществ в продуктах.

21.05.2008 23:18:27, Улица

Честно говоря, никогда в моей семье такого не было... и в своей семье теперь не практикую... Возможно, это неправильно, но и не буду делать. Ну вымочишь овощи, а гадость какая-нить в другой пище вылезет:)))

Очень давно я здесь же на семье прочитала отчет одной девушки, в котором она рассказала, что сделала анализ крови, выяснила список продуктов, которые ей нельзя употреблять, питалась в соответствии с этим и похудела просто замечательно. Я 2 года хотела сделать такой анализ...

Обсуждение

Лично мне кажется что все это бред - ни разу не видела чтобы было написанно в этих анализах - вам можно хлеб:))) и низя ну не знаю... капусту или еще что. они полюбе удаляют все от чего толстеют - жиры - те майонезы и ссиски всякие.углеводы вредные.. те таже диета тока за деньги

У меня подруга делала такой анализ. Получила список запрещенных, разрешенных и нейтральных продуктов. Честно выполняла рекомендации 3 месяца, похудела примерно на 10кг. В разрешенных продуктах были морепродукты, отварное мясо, вареные овощи... В запрещенных выпечка, макароны, жирная свинина, консервы, сахар ну и т.д. Рекомендации: есть 5 раз в день небольшими порциями, не принимать пищу за 4 часа до сна, больше жидкость, зеленый чай. 2 года назад это стоило 300$, каждые 3 месяца необходимо повторять процедуру, заплатив те же деньги... Через несколько месяцев она вернулась к обычному питанию и вместе с ним вернулись потерянные килограммы...

Скажите, как относиться к нитритам и нитратам, прежде всего в таких продуктах, как обработанное мясо - ветчина, бекон, сосиски и т.п. Существуют ли копченые продукты типа ветчин без добаления нитратов и нитритов?? Ведь коптили и солили же как-то мясо в...

Обсуждение

Уже писала, только в "Девичей" про колбасную эпопею одного моего приятеля.

Он сам приехал к нам с Зап. Украины. Культ колбасы очевидно подспудно вызревал в его подсознании всё то время, пока он учился, занимался дефектоскопией сначала на гос, а потом на собственном предприятии.

Но как толькопоявилась возможность, он построил при своём торговом доме маленький цех колбасный. Лично водил по нему всех желающих и просто невозражающих активно граждан, откровенно наслаждался как бы это сказать, примитивностью процесса, дубовыми дровишками в коптильне, и т.п.

Колбаса была - уникальная. Она ПАХЛА колбасой, лежала в холодильнике до месяца, её ели все, даже нелюбящие колбасу, да что там люди - моя Юся её ела!
Надо ли говорить, что всякие добавки, улучшатели вкуса и прочее из этого ряда он с пеной у рта отрицал. Даже чеснок брал не сушёный, а натуральный, с утра чистился тазик чеснока и...
В виду малости производства, на его колбасу надо было записываться заранее, а если праздник какой ожидался, то она вся расходилась по городскому начальству.

И так продолжалось до тех пор, пока колбаса была главным его увлечением. А потом - Всё. Сначала колбасу перестала есть Юся, потом он перестал приносить её в качестве сувенира, а ещё потом он расширил производство перешёл с собственных закупок сырья по деревням на брикеты с фаршем...
Теперь колбасы всем хватает, записываться не надо, но кому она нужна?

"эти консерванты являются канцерогенами!" - это вранье. Потому, что это не консерванты, и потому, что опасны не они, а продукты их распада.
Я понимаю вашу озабоченность, но должен заметить, что копчености и всякие там мясопродуктовые деликатесы уже миллион лет считаются "опасными", так что не очень понимаю, отчего вы вдруг так поздно спохватились - сами же пишите - "давно доказано"?
Но я видел надпись "не содержит нитритов" на каких-то таких продуктах, так что можно поискать. Если очень надо. Мне кажется, что вам проше их не покупать вовсе, ну или - не уверен - приготовить нечто подобное самостоятельно.

Они на рынок ходят с прибором, определяющим кол-во нитратов в продуктах, никогда не покупают копчености, почти не солят пищу, вместо сахара употребляют мед и т.д., занимаются спортом, пьют чистую воду: они ее не покупают в магазине, а замораживают...

Обсуждение

Увы, "правильно" и "полезно" часто не дружат.
Конечно, полезнее сливать первый бульон (после закипания), а вкуснее - наваристый, который получается, не сливая первый бульон. Если же говорить о степени полезности, то самое полезное - бульон вообще выливать. Причем, любой. А варить суп на воде и в конце класть кусочки отварного мяса.
Если вы практикуете правильное, полезное питание, то вы безболезненно будете выливать бульон совсем. Если же вы вдруг об этом подумали - бросьте, не забивайте голову. В жизни очень много вредного. В еде, например, употребление бульонных кубиков, нитраты в овощах и фруктах (вы их тестируете, или даже не задумываетесь об этом?), все жареное, копченое тоже вредно. Ели вы все это едите, то бульон вам погоды для здоровья не сделает. Мне кажется, что если вы серьезно задумываетесь о здоровье, своем и мужа, то вам, прежде всего, необходимо совместно принять решение питаться полезной и здоровой пищей. Это должно быть совместным желанием и усилием, а не борьбой между вами между здоровьем и "наваристостью".
У меня есть знакомая семья, где все придерживаются политики здорового питания. Они на рынок ходят с прибором, определяющим кол-во нитратов в продуктах, никогда не покупают копчености, почти не солят пищу, вместо сахара употребляют мед и т.д., занимаются спортом, пьют чистую воду: они ее не покупают в магазине, а замораживают, а потом вымывают из нее соли. Кстати, советую попробовать, это самая вкусная вода, которую я когда-либо пила. Для них здоровый образ жизни - совместный процесс. А что это для ВАС?

Не кормите лучше ребенка этим. Лучше сами ешьте!



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама