THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Газообразный метан легче воздуха, поэтому образованная им пена легко поднимается под потолок. Ну, а яркое горение основного компонента природного газа удивлять никого не должно - то же самое можно сказать про любой лёгкий углеводород.

Источник: Наука в гифках

2. Реакция окисления люминола и гексацианоферрата(III) калия

Перед вами пример хемилюминесценции: в ходе превращения люминола наблюдается хорошо различимое человеческим глазом свечение. Красная кровяная соль выступает здесь в качестве катализатора - ту же роль, между прочим, может играть и гемоглобин, в результате чего описываемая реакция широко применяется в криминологии для обнаружения следов крови.

Источник: Научное шоу профессора Николя

3. Воздушный шарик, наполненный ртутью(реакция при ударе об пол)

Ртуть - единственный металл, остающийся жидким в нормальных условиях, что позволяет залить его в воздушный шарик. Однако ртуть настолько тяжела, что даже падение шарика с небольшой высоты разорвёт его в клочья.

Источник: Давно не дети

4. Разложение перекиси водорода, катализируемой йодидом калия

В отсутствие примесей водный раствор пероксида водорода вполне стабилен, но стоит внести в него йодид калия, как моментально начнётся разложение этих молекул. Оно сопровождается выделением молекулярного кислорода, прекрасно способствующего образованию различных пен.

Источник: Fishki.net

5. Железо + сульфат меди

Одна из первых реакций, изучаемых в российском курсе химии: в результате замещения более активный металл(железо) растворяется и переходит в раствор, в то время как менее активный металл(медь) осаждается в виде цветных хлопьев. Как несложно догадаться, анимация сильно ускорена во времени.

Источник: Trinixy

6. Перекись водорода и йодистый калий

Ещё один пример реакции разложения пероксида водорода(он же перекись) в присутствие катализатора. Обратите внимание на стоящую на столе бутылку моющего средства: именно она помогает появиться падающей на стол мыльной сосиске.

Источник: Trinixy

7. Горение лития

Литий - один из щелочных металлов, по праву считающихся наиболее активными среди всех прочих металлов. Он горит не столь интенсивно, как его собратья натрий и калий, но нетрудно убедиться, что этот процесс всё равно весьма быстрый.

Источник: Trinixy

8. Обезвоживание сахара в серной кислоте

Очень простая и очень эффектная реакция: серная кислота отнимает воду у молекул сахарозы, превращая их в атомарный углерод(попросту в уголь). Выделяющаяся при этом газообразная вода вспенивает уголь, благодаря чему мы видим угрожающий чёрный столб.

Источник: Fishki.net

9. Кварцевое стекло

В отличие от стандартного оконного стекла, кварц более устойчив к высоким температурам: он не будет« течь» на обычной газовой горелке. Именно поэтому кварцевые трубки спаивают на кислородных горелках, обеспечивающих более высокую температуру пламени.

Источник: Global Research

10. Флуоресцеин

В водном растворе под действием ультрафиолетового излучения зелёный краситель флуоресцеин испускает свет в видимом диапазоне - это явление называется флуоресценцией.

Источник: Thoisoi

11. Молния в цилиндре

Реакция между сульфидом углерода и оксидом азота(I) не только сопровождается ярчайшей белой вспышкой, напоминающей шаровую молнию, но и характеризуется смешным звуком, благодаря которому она и получила своё популярное название - «лающая собака».что иногда это вещество пытаются выдать за драгоценный металл.

Конечный итог реакций взрывного превращения выражают обычно уравнением, связывающим химическую формулу исходного ВВ или состав его (в случае взрывчатой смеси) с составом конечных продуктов взрыва.

Знание уравнения химического превращения при взрыве существенно в двух отношениях. С одной стороны, по этому уравнению можно рассчитать теплоту и объем газообразных продуктов взрыва, а следовательно, и температуру, давление и другие его параметры. С другой стороны, состав продуктов взрыва получает особое значение, если речь идет о ВВ, предназначенных для взрывных работ в подземных выработках (отсюда – расчет рудничной вентиляции, чтобы количество окиси углерода и окислов азота не превосходило определенного объема).

Однако при взрыве не всегда устанавливается химическое равновесие. В тех многочисленных случаях, когда расчет не позволяет надежно установить итоговое равновесие взрывного превращения, – обращаются к эксперименту. Но экспериментальное определение состава продуктов в момент взрыва также встречает серьезные трудности, так как в продуктах взрыва при высокой температуре могут содержаться атомы и свободные радикалы (активные частицы), обнаружить которые после охлаждения не удается.

Органические ВВ, как правило, состоят из углерода, водорода, кислорода и азота. Следовательно, в продуктах взрыва могут содержаться следующие газообразные и твердые вещества: СО 2 , Н 2 О, N 2 , CO, O 2 , H 2 , CH 4 и другие углеводороды: NH 3 , C 2 N 2 , HCN, NO, N 2 O, C. Если в состав ВВ входят сера или хлор, то в продуктах взрыва могут содержаться соответственно SO 2 , H 2 S, HCl и Cl 2 . В случае содержания в составе ВВ металлов, например, алюминия или некоторых солей (например, нитрата аммония NH 4 NO 3 , нитрата бария Ba(NO 3) 2 ; хлора-тов – хлората бария Ba(ClO 3) 2 , хлората калия КСlO 3 ; перхлоратов – аммония NHClO 4 и др.) в составе продуктов взрыва встречаются оксиды, например Al 2 O 3 , карбонаты, например, карбонат бария ВаСО 3 , карбонат калия К 2 СО 3 , бикарбонаты (КНСО 3), цианиды (KCN), сульфаты (BaSO 4 , K 2 SO 4), сульфиды (NS, K 2 S), сульфиты (K 2 S 2 O 3), хлориды (AlCl 3 , BaCl 2 , KCl) и другие соединения.

Наличие и количество тех или иных продуктов взрыва в первую очередь зависит от кислородного баланса состава ВВ.

Кислородный баланс характеризует соотношение между содержанием во взрывчатом веществе горючих элементов и кислорода .

Вычисляют кислородный баланс обычно как разность между весовым количеством кислорода, содержащегося во ВВ, и количеством кислорода, потребным для полного окисления горючих элементов, входящих в его состав. Расчет ведут на 100 г ВВ, в соответствии, с чем кислородный баланс выражают в процентах. Обеспеченность состава кислородом характеризуется кислородным балансом (КБ) или кислородным коэффициентом a к, которые в относительных величинах выражают избыток или недостаток кислорода для полного окисления горючих элементов до высших оксидов, например, СО 2 и Н 2 О.



Если ВВ содержит как раз столько кислорода, сколько нужно для полного окисления входящих в его состав горючих элементов, то кислородный баланс его равен нулю. Если избыток – КБ положителен, при недостатке кислорода – КБ отрицателен. Сбалансированность ВВ по кислороду соответствует КБ – 0; a к = 1.

Если ВВ содержит углерод, водород, азот и кислород и описывается уравнением С а H b N c O d , то величины кислородного баланса и кислородного коэффициента могут определяться по формулам

(2)

где а, b, c и d – число атомов соответственно С, H, N и О в химической формуле ВВ; 12, 1, 14, 16 – округленные до целого числа атомные массы соответственно углерода, водорода, азота и кислорода; знаменатель дроби в уравнении (1) определяет молекулярную массу ВВ: М = 12а + в + 14с + 16d.

С точки зрения безопасности производства и эксплуатации (хранения, транспортирования, применения) ВВ большинство их рецептур имеют отрицательный кислородный баланс.

По кислородному балансу все ВВ подразделяются на следующие три группы:

I. ВВ с положительным кислородным балансом: углерод окисляется до СО 2 , водород до Н 2 О, азот и избыток кислорода выделяются в элементарном виде.

II. ВВ с отрицательным кислородным балансом, когда кислорода недостаточно для полного окисления компонентов до высших оксидов и углерод частично окисляется до СО (но все ВВ превращаются в газы).

III. ВВ с отрицательным кислородным балансом, но кислорода недостаточно для превращения всех горючих компонентов в газы (в продуктах взрыва имеется элементарный углерод).

4.4.1. Расчет состава продуктов взрывчатого разложения ВВ

с положительным кислородным балансом (I группа ВВ)

При составлении уравнений реакций взрыва ВВ с положительным кислородным балансом руководствуются следующими положениями: углерод окисляется до углекислоты СО 2 , водород до воды Н 2 О, азот и избыток кислорода выделяются в элементарном виде (N 2 , O 2).

Например.

1. Составить уравнение реакции (определить состав продуктов взрыва) взрывчатого разложения индивидуального ВВ.

Нитроглицерин: С 3 Н 5 (ONO 2) 3 , М = 227.

Определяем величину кислородного баланса для нитроглицерина:

КБ > 0, запишем уравнение реакции:

С 3 Н 5 (ONO 2) 3 = 3СО 2 + 2,5Н 2 О + 0,25О 2 + 1,5N 2.

Кроме основной реакции протекают реакции диссоциации:

2СО 2 2СО + О 2 ;

О 2 + N 2 2NO;

2H 2 O 2H 2 + O 2 ;

H 2 O + CO CO 2 + H 2 .

Но так как КБ = 3,5 (намного больше нуля) – рекакции смещены в сторону образования СО 2 , Н 2 О, N 2 , следовательно доля газов СО, Н 2 и NО в продуктах взрывчатого разложения незначительна и ими можно пренебречь.

2. Составить уравнение реакции взрывчатого разложения смесевого ВВ: аммонала, состоящего из 80% аммиачной селитры NH 4 NO 3 (M = 80), 15% тротила C 7 H 5 N 3 O 6 (М = 227) и 5% алюминия Al(а.м. М = 27).

Расчет кислородного баланса и коэффициента α к смесевых ВВ ведут следующим образом: вычисляют количество каждого из химических элементов, содержащихся в 1 кг смеси и выражают его в молях. Затем составляют условную химическую формулу для 1 кг, смесевого ВВ, аналогичную по виду химической формуле для индивидуального ВВ и далее ведут расчет аналогично выше приведенному примеру.

Если в смесевом ВВ содержится алюминий, то уравнения для определения величин КБ и α к имеют следующий вид:

,

,

где е – число атомов алюминия в условной формуле.

Решение.

1. Рассчитываем элементарный состав 1 кг аммонала и записываем его условную химическую формулу

%.

2. Записываем уравнение реакции разложения аммонала:

С 4,6 Н 43,3 N 20 O 34 Al 1,85 = 4,6CO 2 + 21,65H 2 O + 0,925Al 2 O 3 + 10N 2 + 0,2O 2 .

4.4.2. Расчет состава продуктов взрывчатого разложения ВВ

с отрицательным кислородным балансом (II группа ВВ)

Как было отмечено ранее при составлении уравнений реакций взрывчатого разложения ВВ второй группы необходимо учитывать следующие особенности: водород окисляется до Н 2 О, углерод окисляется до СО, оставшийся кислород окисляет часть СО до СО 2 и азот выделяется в виде N 2 .

Пример: Составить уравнение реакции взрывчатого разложения пентаэритриттетранитрата (тэна) С(СН 2 ОNO 2) 4 Мтэна = 316. Кислородный баланс рав-ный –10,1%.

Из химической формулы тэна видно, что кислорода до полного окисления водорода и углерода недостаточно (для 8 водородов необходимо 4 ат. кислорода, чтобы превратить в Н 2 О = 4Н 2 О) (для 5 ат. углерода необходимо 10 ат. кислорода, чтобы превратить в СО 2 = 5СО 2) итого требуется 4 + 10 = 14 ат. кислорода, а их всего 12 атомов.

1. Составляем уравнение реакции разложения тэна:

С(СН 2 ОNO 2) 4 = 5CO + 4H 2 O + 1,5O 2 + 2N 2 = 4H 2 O + 2CO + 3CO 2 + 2N 2 .

Для определения величины коэффициентов СО и СО 2:

5СО + 1,5О 2 = хСО + уСО 2 ,

х + у = n – сумма атомов углерода,

х + 2у = m – сумма атомов кислорода,

Х + у = 5 х = 5 – у

х + 2у = 8 или х = 8 – 2у

или 5 – у = 8 – 2у; у = 8 – 5 = 3; х = 5 – 3 = 2.

Т.о. коэффициент при СО х = 2; при СО 2 у = 3, т.е.

5СО + 1,5 О 2 = 2СО + 3СО 2 .

Вторичные реакции (диссоциации):

Водяного пара: Н 2 О + СО СО 2 + Н 2 ;

2Н 2 О 2Н 2 + О 2 ;

Диссоциация: 2СО 2 2СО + О 2 ;

2. Для оценки погрешности рассчитаем состав продуктов реакции взрывчатого разложения с учетом наиболее существенной из вторичных реакций – реакции водяного пара (Н 2 О + СО СО 2 + Н 2).

Уравнение реакции взрывчатого разложения тэна представим в виде:

С(СН 2 ОNO 2) 4 = uH 2 O + xCO + yCO 2 + zH 2 + 2N 2 .

Температура взрывчатого разлива тэна примерно 4000 0 К.

Соответственно константа равновесия водяного пара :

.

Записываем и решаем систему уравнений:

,

х + у = 5 (см. выше) – число атомов углерода;

2z + 2у = 8 – число атомов водорода;

х + 2у + u = 12 – число атомов кислорода.

Преобразование системы уравнений сводится к получению квадратного уравнения:

7,15у 2 – 12,45у – 35 = 0.

(Уравнение типа ау 2 + ву + с = 0).

Решение его имеет вид:

,

,

у = 3,248, тогда х = 1,752; z = 0,242; u = 3,758.

Таким образом, уравнение реакции принимает вид:

C(CH 2 ONO 2) 4 = 1,752CO + 3,248CO 2 + 3,758H 2 O + 0,242H 2 + 2N 2 .

Из полученного уравнения видно, что погрешность в определении состава и количества продуктов взрывчатого разложения приближенным способом незначительна.

4.4.3. Составление уравнений реакций взрывчатого разложения ВВ

с отрицательным КБ (III группа)

При написании уравнений реакции взрывчатого разложения для третьей группы ВВ необходимо придерживаться следующей последовательности:

1. определить по химической формуле ВВ его КБ;

2. водород окислить до Н 2 О;

3. углерод окислить остатками кислорода до СО;

4. написать остальные продукты реакции, в частности С, N и т.д.;

5. проверить коэффициенты.

Пример: Составить уравнение реакции взрывчатого разложения тринитротолуола (тротила, тола) C 6 H 2 (NO 2) 3 CH 3 .

Молярная масса М = 227; КБ = –74,0%.

Решение: Из химической формулы видим, что кислорода недостаточно для окисления углерода и водорода: для полного окисления водорода необходимо 2,5 атома кислорода, неполного окисления углерода – 7 атомов (всего 9,5 по сравнению с имеющимися 6-тью атомами). В этом случае уравнение реакции разложения тротила имеет вид:

C 6 H 2 (NO 2) 3 CН 3 = 2,5Н 2 O + 3,5СО + 3,5 С + 1,5N 2 .

Вторичные реакции:

Н 2 О + СО СО 2 + Н 2 ;


Во время химических реакций из одних веществ получаются другие (не путать с ядерными реакциями, в которых один химический элемент превращается в другой).

Любая химическая реакция описывается химическим уравнением :

Реагенты → Продукты реакции

Стрелка указывает направление протекания реакции.

Например:

В данной реакции метан (СН 4) реагирует с кислородом (О 2), в результате чего образуется диоксид углерода (СО 2) и вода (Н 2 О), а точнее - водяной пар. Именно такая реакция происходит на вашей кухне, когда вы поджигаете газовую конфорку. Читать уравнение следует так: одна молекула газообразного метана вступает в реакцию с двумя молекулами газообразного кислорода, в результате получается одна молекула диоксида углерода и две молекулы воды (водяного пара).

Числа, расположенные перед компонентами химической реакции, называются коэффициентами реакции .

Химические реакции бывают эндотермическими (с поглощением энергии) и экзотермические (с выделением энергии). Горение метана - типичный пример экзотермической реакции.

Существует несколько видов химических реакций. Самые распространенные:

  • реакции соединения;
  • реакции разложения;
  • реакции одинарного замещения;
  • реакции двойного замещения;
  • реакции окисления;
  • окислительно-восстановительные реакции.

Реакции соединения

В реакциях соединения хотя бы два элемента образуют один продукт:

2Na (т) + Cl 2 (г) → 2NaCl (т) - образование поваренной соли.

Следует обратить внимание на существенный нюанс реакций соединения: в зависимости от условий протекания реакции или пропорций реагентов, вступающих в реакцию, - ее результатом могут быть разные продукты. Например, при нормальных условиях сгорания каменного угля получается углекислый газ:
C (т) + O 2 (г) → CO 2 (г)

Если же количество кислорода недостаточно, то образуется смертельно опасный угарный газ:
2C (т) + O 2 (г) → 2CO (г)

Реакции разложения

Эти реакции являются, как бы, противоположными по сути, реакциям соединения. В результате реакции разложения вещество распадается на два (3, 4...) более простых элемента (соединения):

  • 2H 2 O (ж) → 2H 2 (г) + O 2 (г) - разложение воды
  • 2H 2 O 2 (ж) → 2H 2 (г) O + O 2 (г) - разложение перекиси водорда

Реакции одинарного замещения

В результате реакций одинарного замещения, более активный элемент замещает в соединении менее активный:

Zn (т) + CuSO 4 (р-р) → ZnSO 4 (р-р) + Cu (т)

Цинк в растворе сульфата меди вытесняет менее активную медь, в результате чего образуется раствор сульфата цинка.

Степень активности металлов по возрастанию активности:

  • Наиболее активными являются щелочные и щелочноземельные металлы

Ионное уравнение вышеприведенной реакции будет иметь вид:

Zn (т) + Cu 2+ + SO 4 2- → Zn 2+ + SO 4 2- + Cu (т)

Ионная связь CuSO 4 при растворении в воде распадается на катион меди (заряд 2+) и анион сульфата (заряд 2-). В результате реакции замещения образуется катион цинка (который имеет такой же заряд, как и катион меди: 2-). Обратите внимание, что анион сульфата присутствует в обеих частях уравнения, т.е., по всем правилам математики его можно сократить. В итоге получится ионно-молекулярное уравнение:

Zn (т) + Cu 2+ → Zn 2+ + Cu (т)

Реакции двойного замещения

В реакциях двойного замещения происходит замещение уже двух электронов. Такие реакции еще называют реакциями обмена . Такие реакции проходят в растворе с образованием:

  • нерастворимого твердого вещества (реакции осаждения);
  • воды (реакции нейтрализации).

Реакции осаждения

При смешивании раствора нитрата серебра (соль) с раствором хлорида натрия образуется хлорид серебра:

Молекулярное уравнение: KCl (р-р) + AgNO 3 (p-p) → AgCl (т) + KNO 3 (p-p)

Ионное уравнение: K + + Cl - + Ag + + NO 3 - → AgCl (т) + K + + NO 3 -

Молекулярно-ионное уравнение: Cl - + Ag + → AgCl (т)

Если соединение растворимое, оно будет находиться в растворе в ионном виде. Если соединение нерастворимое, оно будет осаждаться, образовывая твердое вещество.

Реакции нейтрализации

Это реакции взаимодействия кислот и оснований, в результате которых образуются молекулы воды.

Например, реакция смешивания раствора серной кислоты и раствора гидроксида натрия (щелока):

Молекулярное уравнение: H 2 SO 4 (p-p) + 2NaOH (p-p) → Na 2 SO 4 (p-p) + 2H 2 O (ж)

Ионное уравнение: 2H + + SO 4 2- + 2Na + + 2OH - → 2Na + + SO 4 2- + 2H 2 O (ж)

Молекулярно-ионное уравнение:2H + + 2OH - → 2H 2 O (ж) или H + + OH - → H 2 O (ж)

Реакции окисления

Это реакции взаимодействия веществ с газообразным кислородом, находящимся в воздухе, при которых, как правило, выделяется большое количество энергии в виде тепла и света. Типичная реакция окисления - это горение. В самом начале данной страницы приведена реакция взаимодействия метана с кислородом:

CH 4 (г) + 2O 2 (г) → CO 2 (г) + 2H 2 O (г)

Метан относится к углеводородам (соединения из углерода и водорода). При реакции углеводорода с кислородом выделяется много тепловой энергии.

Окислительно-восстановительные реакции

Это реакции при которых происходит обмен электронами между атомами реагентов. Рассмотренные выше реакции, также являются окислительно-восстановительными реакциями:

  • 2Na + Cl 2 → 2NaCl - реакция соединения
  • CH 4 + 2O 2 → CO 2 + 2H 2 O - реакция окисления
  • Zn + CuSO 4 → ZnSO 4 + Cu - реакция одинарного замещения

Максимально подробно окислительно-восстановительные реакции с большим количеством примеров решения уравнений методом электронного баланса и методом полуреакций описаны в разделе

Сонохимия – это применение ультразвука в химических реакциях и процессах. Механизмом, вызывающим звукохимические эффекты в жидкостях, служит явление акустической кавитации.

Ультразвуковая лаборатория и промышленные устройства компании Hielscher используются в широком диапазоне звукохимических процессов.

Звукохимические реакции

Следующие звукохимические эффекты можно наблюдать в химических реакциях и процессах:

  • Увеличение скорости реакции
  • Увеличение выхода реакции
  • Более эффективное использование энергии
  • Звукохимические методы для перехода от одной реакции к другой
  • Улучшение катализатора межфазного переноса
  • Исключение катализатора межфазного переноса
  • Использование неочищенных или технических реагентов
  • Активация металлов и твёрдых веществ
  • Увеличение реакционной способности реагентов или катализаторов ()
  • Улучшение синтеза частиц
  • Покрытие наночастиц

Ультразвуковая кавитация в жидкостях

Кавитация означает «образование, рост и взрывное разрушение пузырьков в жидкости. Кавитационный взрыв производит интенсивный местный нагрев (~5000 K), высокое давление (~1000 атм.), и огромные скорости нагрева/охлаждения (>109 K/сек.) и потоков жидких струй (~400 км/час)»

Кавитационные пузырьки – это пузырьки вакуума. Вакуум создаётся быстро движущейся поверхностью на одной стороне и инертной жидкостью на другой. Получающийся перепад давления служит для преодоления сил сцепления и в жидкости. Кавитация может быть получена различными путями, например, соплами Вентури, соплами высокого давления, высокоскоростным вращением или ультразвуковыми датчиками. Во всех этих системах поступающая энергия преобразуется в трение, турбулентности, волны и кавитацию. Часть поступающей энергии, которая трансформируется в кавитацию, зависит от нескольких факторов, характеризующих движение оборудования, генерирующего кавитацию в жидкости.

Интенсивность ускорения является одним из наиболее важных факторов, влияющих на эффективность трансформации энергии в кавитацию. Более высокое ускорение создаёт больший перепад давления, что, в свою очередь, увеличивает вероятность создания пузырьков вакуума вместо образования волн, распространяющихся через жидкость. Таким образом, чем больше ускорение, тем больше доля энергии, которая преобразуется в кавитацию. В случае с ультразвуковыми датчиками интенсивность ускорения характеризуется амплитудой колебаний. Более высокие амплитуды приводят к более эффективному созданию кавитации. Промышленные устройства компании Hielscher Ultrasonics могут создавать амплитуды до 115 мкм. Эти высокие амплитуды учитывают высокое передаточное отношение мощности, что, в свою очередь, позволяет создавать высокие энергетические плотности до 100 Вт/см³.

В дополнение к интенсивности жидкость должна ускоряться так, чтобы создавать минимальные потери в пересчёте на турбулентность, трение и образование волн. Для этого оптимальным путём будет одностороннее направление движения. Ультразвук используется, благодаря его следующим действиям:

  • подготовка активированных металлов путём восстановления солей металлов
  • генерирование активированных металлов обработкой ультразвуком
  • звукохимический синтез частиц осаждением окисей металлов (Fe, Cr, Mn, Co) например, для применения в качестве катализаторов
  • пропитка металлов или галогенидов металлов на подложках
  • приготовление растворов активированных металлов
  • реакции, задействующие металлы через местное образование органических веществ
  • реакции, задействующие неметаллические твёрдые вещества
  • кристаллизация и осаждение металлов, сплавов, цеолитов и прочих твёрдых веществ
  • изменение поверхностной морфологии и размера частиц в результате высокоскоростных столкновений частиц между собой
    • образование аморфных наноструктурных материалов, включая переходные металлы с высокой площадью поверхности, сплавы, карбиды, оксиды и коллоиды
    • укрупнение кристаллов
    • выравнивание и удаление покрытий из пассивирующих оксидов
    • микроманипулирование (разделение на фракции) мелких частиц
  • приготовление коллоидов (Ag, Au, Q-размерных CdS)
  • включение гостевых молекул в твёрдые вещества с неорганической прослойкой
  • сонохимия полимеров
    • деградация и модифицирование полимеров
    • синтез полимеров
  • сонолизис органических загрязняющих веществ в воде

Звукохимическое оборудование

Большинство упомянутых звукохимических процессов может быть подогнано под прямоточную работу. Мы будем рады помочь вам в выборе звукохимического оборудования для ваших нужд. Для исследований и проведения испытаний процессов мы рекомендуем применять наши лабораторные приборы или устройство



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама