THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама


Биологическое действие гормонов проявляется через их взаимодействие с рецепторами клеток-мишеней. Для проявления биологической активности связывание гормона с рецептором должно приводить к образованию химического сигнала внутри клетки, который вызывает специфический биологический ответ, например изменение скорости синтеза ферментов и других белков или изменение их активности. Мишенью для гормона могут служить клетки одной или нескольких тканей. Воздействуя на клетку-мишень, гормон вызывает специфическую ответную реакцию. Например, щитовидная железа - специфическая мишень для тиреотропина, под действием которого увеличивается количество ацинарных клеток щитовидной железы, повышается скорость биосинтеза тиреоидных гормонов. Характерный признак клетки-мишени - способность воспринимать информацию, закодированную в химической структуре гормона.

Начальный этап в действии гормона на клетку-мишень - взаимодействие гормона с рецептором клетки. Концентрация гормонов во внеклеточной жидкости очень низка и обычно колеблется в пределах 10-6-10-11 ммоль/л. Клетки-мишени отличают соответствующий гормон от множества других молекул и гормонов благодаря наличию на клетке-мишени соответствующего рецептора со специфическим центром связывания с гормоном.

Рецепторы по своей химической природе являются белками и, как правило, состоят из нескольких доменов.

Сигнальными молекулами могут быть неполярные и полярные вещества. Неполярные вещества, например стероидные гормоны, проникают в клетку, проходя через липидный бислой. Полярные сигнальные молекулы в клетку не проникают, но связываются специфическими рецепторами клеточных мембран. Такое взаимодействие вызывает цепь последовательных событий в самой мембране и внутри клетки. К полярным сигнальным молекулам относят белковые гормоны (например, глюкагон, инсулин, паратгормон), нейромедиаторы (например, ацетилхолин, глицин, γ-аминомасляная кислота), факторы роста, цитокины, эйкозаноиды.

Внутренние - сигналы образуются и действуют в одной и той же клетке, часто сигналами выступают метаболиты. Они выполняются роль аллостерических активаторов/ ингибиторов ферментов.

Внешние – управляющие сигналы поступают в клетку из внешней среды.

Задачи:

Ø Внутреннее и межклеточное согласование метаболических процессов;

Ø Исключение холостых циклов метаболизма;

Ø Регуляция процессов образования и использования энергии;

Ø Поддержание гомеостаза;

Ø Приспособление организма к изменениям окружающей среды;

Сигнальные молекулы – эндогенные химические соединения, которые в результате взаимодействия с рецепторами обеспечивают внешнее управление биохимическими реакциями в клетках-мишенях.

Клетка-мишень - это клетка, имеющая специализированные воспринимающие рецепторы для данного вида сигнальных молекул.

Особенности сигнальных молекул:

ü Малый период жизни;

ü Высокая биологическая активность;

ü Уникальность действия;

ü Эффект усиления;

ü Один вид сигнальной молекулы может иметь несколько клеток-мишеней;

ü Реакция разных клеток-мишеней на одну сигнальную молекулу может отличаться;

Химические соединения, которые взаимодействуют с определенным рецептором, называют Лигандами.

Виды регуляторных эффектов:

1. Эндокринный – сигнальная молекула поступает с током крови к клетке-мишени из желез внутренней секреции (дистантное действие).

2. Паракринный - сигнальная молекула вырабатывается и действует на клетки в пределах одного органа или ткани.

3. Аутокринный - сигнальная молекула действует на клетку её образовавшую.

Классификация сигнальных молекул:

По химической природе:

o Органические – белковые соединения, стероиды и т.д

o Неорганические – оксид азота и т.д.

По физическим свойствам:

o Липофобные - не могут проникать через мембрану клетки. Они растворимы в воде.

o Липофильные - растворяются в жирах. Свободно проникают через ЦПМ и действуют на рецепторы внутри клетки.

По биологической природе:

o Гормоны (по месту образования) сигнальные молекулы с выраженным эндокринным эффектом.

o Факторы роста и цитокины – факторы роста. Это сигнальные молекулы белковой природы, которые выделяются неспециализированными клетками организма. Они регулируют рост, дифференцировку, пролиферацию соседних клеток. Действие пара- и аутокринно.

o Нейромедиаторы – выделяются нервными клетками и вызывают деполяризацию мембран. сигнальные молекулы, вырабатывающиеся нервными клетками, координирующие работу нейронов и управление периферическими тканями. Их действие связано с влиянием на ионные каналы. Они изменяют их проницаемость и вызывают деполяризацию мембраны. гипоталамус является компонентом и своеобразным «выходным каналом» лимбической системы. Это отдел промежуточного мозга, контролирующий различные параметры гомеостаза. С одной стороны он связан с ЦНС (центры ВНС), с другой - с гипофизом через нервные проводники и особую портальную систему.

Гипоталамус участвует во многих функциях нервной регуляции,а также регулирует эндокринную систему.

Регуляция метаболизма : внутренняя и внешняя. Внутренняя регуляция - управляющие сигналы образуются и действуют внутри одной и той же клетки (само-регуляция). Внешняя регуляция - управляющие сигналы поступают к клетке из внешней среды. Внутренняя регуляция осуществляется путём изменения активности ферментов активаторами или ингибиторами. Внешняя регуляция обеспечивается специализированными сигнальными молекулами, которые в результате взаимодействия с ферментами обеспечивают внешнее управление биохимическими процессами в клетках-мишенях.

Общие этапы действия сигнальных молекул:

1. Распознавание сигналов рецепторами клетки-мишени

2. Передача сигнала и его усиление

3. Изменение биохимических процессов в клетке

4. Элиминация сигнала

Вторые посредники в действии липофобных сигнальных молекул, цАМФ и цГМФ -зависимые механизмы действия. Аденилатциклаза, протеинкиназа. Продемонстрировать эффекты гормонов, осуществляющие регуляторное действие при участии цАМФ.

Особенности механизма липофобных сигнальных молекул:

ü Взаимодействие с поверхностным клеточным рецептором

ü Сигнал передается с рецептора внутрь клетки и усиливается там с помощью внутриклеточных регуляторов. Высокомолекулярные вторичные посредники – Мессенжеры, Низкомолекулярные – цАМФ, цГМФ, диацилглицерол, Са.

ü Биологическое действие обусловлено сочетанием регуляции активности ранее синтезированных ферментов.

Аденилатциклазный МЕХАНИЗМ ДЕЙСТВИЯ, ЗАВИСИМЫЙ ОТ ЦАМФ.

Факторы, необходимые для этого:

    • нерастворимая в воде сигнальная молекула;
    • поверхностные рецепторы клетки-мишени;
    • внутриклеточный трансдуктор G-белок. Состоит из 3 единиц: альфа, бета, гамма.
  • G-белок может быть ингибирующий и активирующий. G-белок способен присоединять ГДФ или ГТФ.
    • Аденилатциклаза (АЦ) (превращает АТФ в ЦАМФ);
    • Протеинкиназа ЦАМФ-зависимая. Она катализирует реакцию фосфорилирования белков;
    • Регуляторные элементы ДНК (ЭЕХАНСЕР и САЙЛЕНСЕР);
    • ФОСФОДИЭСТЕРАЗА - разрушает ЦАМФ;
    • ФОСФАТАЗА - дефосфорилируют белки;
    • Белок-синтетический аппарат клетки.

Этапы, стимулирующие ЦАМФ -зависимый механизм :

1. взаимодействие сигнальной молекулы с рецептором;

2. изменение конформации G-белка;

3. замена ГДФ на ГТФ в альфа-S единице G-белка;α-субединица отделяется и добавляется к АЦ.

4. альфа-S ГТФ активирует АЦ;

5. АЦ синтезирует ЦАМФ;

6. ЦАМФ активирует ПРОТЕИНКИНАЗУ-А (ПКА);

7. ПКА фосфорилирует белки и белковые факторы транскрипции, изменяющие активность и количество ферментов;

8. Прекращение действия.

Отделение α-субединицы от АЦ

ФОСФОДИЭСТЕРАЗА - разрушает ЦАМФ.

ФОСФАТАЗА - ДЕФОСФОРИЛИРУЕТ белки.

Этапы, ингибирующие ЦАМФ -зависимый механизм:

С первого по третий те же самые этапы, отличие в G-белке (альфа-I единица). Четвёртый этап - связывание ГТФ с альфа-I единицей будет ингибировать АЦ. Ингибируюший механизм противодействует и прекращает эффекты ЦАМФ в клетке. ЦГМФ -зависимый стимулирующий механизм действия.

цЦГМФ-зависимый механизм

Рецептор встроен в мембрану клетки и связан с ферментом ГУАНИЛАТЦИКЛАЗОЙ (ГЦ). При присоединении сигнальной молекулы ГЦ активируется и катализирует реакцию ГТФ * ЦГМФ. Последний активирует ПРОТЕИНКИНАЗУ-G (ПКО), а она запускает реакцию фосфорилирования белков (ферментов и факторов транскрипции).

Альдостерон - регуляция объема внутриклеточной жидкости, повышение реабсорбции воды и натрия. Тироксин – повышение основного обмена

2. Местное и резорбтивное действие лекарственных средств

Действие вещества, проявляющееся на месте его приложения, называют местным. Например, обволакивающие средства покрывают слизистую оболочку, препятствуя раздражению окончаний афферентных нервов. Однако истинно местное действие наблюдается очень редко, так как вещества могут либо частично всасываться, либо оказывать рефлекторное влияние.

Действие вещества, развивающееся после его всасывания и поступления в общий кровоток, а затем в ткани, называют резорбтивным. Резорбтивное действие зависит от путей введения лекарственного вещества и его способности проникать через биологические барьеры.

При местном и резорбтивном действии лекарственные средства оказывают либо прямое, либо рефлекторное влияние. Прямое влияние реализуется на месте непосредственного контакта вещества с тканью. При рефлекторном воздействии вещества влияют на экстеро– или интерорецепторы, поэтому эффект проявляется изменением состояния либо соответствующих нервных центров, либо исполнительных органов. Так, использование горчичников при патологии органов дыхания рефлекторно улучшает их трофику (через экстерорецепторы кожи).

Лекция 6. Основные вопросы фармакодинамики (часть 1)

Основная задача фармакодинамики – выяснить, где и как действуют лекарственные вещества, вызывая те или иные эффекты, то есть установить мишени, с которыми взаимодействуют лекарства.

1. Мишени лекарственных средств

В качестве мишеней лекарственных средств выступают рецепторы, ионные каналы, ферменты, транспортные системы, гены. Рецепторами называют активные группировки макромолекул субстратов, с которыми взаимодействует вещество. Рецепторы, обеспечивающие проявление действия вещества, называют специфическими.

Выделяют 4 типа рецепторов:

рецепторы, осуществляющие прямой контроль за функцией ионных каналов (Н– холинорецепторы, Г АМК А -рецепторы);

рецепторы, сопряженные с эффектором через систему «G-белки-вторичные передатчики» или «G-белки-ионные каналы». Такие рецепторы имеются для многих гормонов и медиаторов (М– холинорецепторы, адренорецепторы);

рецепторы, осуществляющие прямой контроль функции эффекторного фермента. Они непосредственно связаны с тирозинкиназой и регулируют фосфорилирование белков (рецепторы инсулина);

рецепторы, осуществляющие транскрипцию ДНК. Это внутриклеточные рецепторы. С ними взаимодействуют стероидные и тиреоидные гормоны.

Сродство вещества к рецептору, приводящее к образованию с ним комплекса «вещество– рецептор», обозначается термином «аффинитет». Способность вещества при взаимодействии со специфическим рецептором стимулировать его и вызывать тот или иной эффект называется внутренней активностью.

2. Понятие о веществах-агонистах и антагонистах

Вещества, которые при взаимодействии со специфическими рецепторами вызывают в них изменения, приводящие к биологическому эффекту, называют агонистами. Стимулирующее действие агониста на рецепторы может приводить к активации или угнетению функции клетки. Если агонист, взаимодействуя с рецепторами, вызывает максимальный эффект, то это полный агонист. В отличие от последнего частичные агонисты при взаимодействии с теми же рецепторами не вызывают максимального эффекта.

Вещества, связывающиеся с рецепторами, но не вызывающие их стимуляции, называют антагонистами. Их внутренняя активность равна нулю. Их фармакологические эффекты обусловлены антагонизмом с эндогенными лигандами (медиаторами, гормонами), а также с экзогенными веществами-агонистами. Если они оккупируют те же рецепторы, с которыми взаимодействуют агонисты, то речь идет о конкурентных антагонистах; если другие участки макромолекулы, не относящиеся к специфическому рецептору, но взаимосвязанные с ним, то говорят о неконкурентных антагонистах.

Если вещество действует как агонист на один подтип рецепторов и как антагонист – на другой, оно обозначается как агонист-антагонист.

Выделяют и так называемые неспецифические рецепторы, связываясь с которыми вещества не вызывают возникновения эффекта (белки плазмы крови, мукополисахариды соединительной ткани); их еще называют местами неспецифического связывания веществ.

Взаимодействие «вещество – рецептор» осуществляется за счет межмолекулярных связей. Один из наиболее прочных видов связи – ковалентная связь. Она известна для небольшого количества препаратов (некоторые противобластомные вещества). Менее стойкой является более распространенная ионная связь, типичная для ганглиоблокаторов и ацетилхолина. Важную роль играют вандерваальсовы силы (основа гидрофобных взаимодействий) и водородные связи.

В зависимости от прочности связи «вещество – рецептор» различают обратимое действие, характерное для большинства веществ, и необратимое действие (в случае ковалентной связи).

Если вещество взаимодействует только с функционально однозначными рецепторами определенной локализации и не влияет на другие рецепторы, то действие такого вещества считают избирательным. Основой избирательности действия является сродство (аффинитет) вещества к рецептору.

Другой важной мишенью лекарственных веществ являются ионные каналы. Особый интерес представляет поиск блокаторов и активаторов Са 2 +-каналов с преимущественным влиянием на сердце и сосуды. В последние годы большое внимание привлекают вещества, регулирующие функцию К+-каналов.

Важной мишенью многих лекарственных веществ являются ферменты. Например, механизм действия нестероидных противовоспалительных средств обусловлен ингибированием циклооксигеназы и снижением биосинтеза простогландинов. Антибластомный препарат метотрексат блокирует дигидрофолатредуктазу, препятствуя образованию тетрагидрофолата, необходимого для синтеза пуринового нуклеотида-тимидилата. Ацикловир ингибирует вирусную ДНК-полимеразу.

Еще одна возможная мишень лекарственных средств – транспортные системы для полярных молекул, ионов и мелких гидрофильных молекул. Одно из последних достижений в этом направлении – создание ингибиторов пропионового насоса в слизистой оболочке желудка (омепразол).

Важной мишенью многих лекарственных веществ считаются гены. Исследования в области генной фармакологии получают все более широкое распространение.

Лекция 7. Зависимость фармакотерапевтического эффекта от свойств лекарственных средств и условий их применения

1. Химическое строение

I. Химическое строение, физико-химические и физические свойства лекарственных средств. Для эффективного взаимодействия вещества с рецептором необходима такая структура лекарственного средства, которая обеспечивает наиболее тесный контакт его с рецептором. От степени сближения вещества с рецептором зависит прочность межмолекулярных связей. Для взаимодействия вещества с рецептором особенно важно их пространственное соответствие, т. е. комплементарность. Это подтверждается различиями в активности стереоизомеров. Если вещество имеет несколько функционально активных группировок, то необходимо учитывать расстояние между ними.

Многие количественные и качественные характеристики действия вещества зависят также от таких физических и физико-химических свойств, как растворимость в воде и липидах; для порошкообразных соединений очень важна степень их измельчения, для летучих веществ – степень летучести и т. д.

2. Дозы и концентрации

II. В зависимости от дозы (концентрации) меняются скорость развития эффекта, его выраженность, продолжительность, а иногда и характер действия. Обычно с повышением дозы уменьшается латентный период и увеличиваются выраженность и длительность эффекта.

Дозой называют количество вещества на один прием (разовая доза). Обозначают дозу в граммах или долях грамма. Минимальные дозы, в которых лекарственные средства вызывают начальный биологический эффект, называют пороговыми, или минимальными, действующими дозами. В практической медицине чаще всего используют средние терапевтические дозы, в которых препараты у подавляющего большинства больных оказывают необходимое фармакотерапевтическое действие. Если при их назначении эффект недостаточно выражен, дозу увеличивают до высшей терапевтической. Кроме того, выделяют токсические дозы, в которых вещества вызывают опасные для организма токсические эффекты, и смертельные дозы. В некоторых случаях указывается доза препарата на курс лечения (курсовая доза). Если возникает необходимость быстро создать высокую концентрацию лекарственного вещества в организме, то первая доза (ударная) превышает последующие.

3. Повторное применение лекарственных средств Химическое строение

III. Увеличение эффекта ряда веществ связано с их способностью к кумуляции. Под материальной кумуляцией имеют в виду накопление в организме фармакологического вещества. Это типично для длительно действующих препаратов, которые медленно выводятся или прочно связываются в организме (например, некоторые сердечные гликозиды из группы наперстянки). Накопление вещества при его повторном употреблении может быть причиной развития токсических эффектов. В связи с этим дозировать такие препараты нужно с учетом кумуляции, постепенно уменьшая дозу или увеличивая интервалы между приемами препарата.

Известны примеры функциональной кумуляции, при которой накапливается эффект, а не вещество. Так, при алкоголизме нарастающие изменения ЦНС приводят к возникновению белой горячки. В данном случае вещество (этиловый спирт) быстро окисляется и в тканях не задерживается. Суммируются при этом лишь нейротропные эффекты.

Снижение эффективности веществ при их повторном применении – привыкание (толерантность) – наблюдается при использовании различных препаратов (анальгетики, гипотензивные и слабительные вещества). Оно может быть связано с уменьшением всасывания вещества, увеличением скорости его инактивации и (или) повышением выведения, снижением чувствительности к нему рецепторов или уменьшением их плотности в тканях. В случае привыкания для получения исходного эффекта дозу препарата надо повышать или одно вещество заменить другим. При последнем варианте следует учитывать, что существует перекрестное привыкание к веществам, взаимодействующим с теми же рецепторами. Особым видом привыкания является тахифилаксия – привыкание, возникающее очень быстро, иногда после однократного приема препарата.

По отношению к некоторым веществам (обычно нейротропным) при их повторном введении развивается лекарственная зависимость. Она проявляется непреодолимым стремлением к приему вещества, обычно с целью повышения настроения, улучшения самочувствия, устранения неприятных переживаний и ощущений, в том числе возникающих при отмене веществ, вызывающих лекарственную зависимость. В случае психической зависимости прекращение введения препарата (кокаин, галлюциногены) вызывает лишь эмоциональный дискомфорт. При приеме некоторых веществ (морфин, героин) развивается физическая зависимость. Отмена препарата в данном случае вызывает тяжелое состояние, которое, помимо резких психических изменений, проявляется разнообразными, часто тяжелыми соматическими нарушениями, связанными с расстройством функции многих систем организма вплоть до смертельного исхода. Это так называемый синдром абстиненции.

Лекция 8. Взаимодействие лекарственных средств (часть 1)

1. Основные виды взаимодействия лекарственных препаратов

При одновременном назначении нескольких лекарственных веществ возможно их взаимодействие друг с другом, приводящее к изменению выраженности и характера основного эффекта, его продолжительности, а также к усилению или ослаблению побочных и токсических влияний. Взаимодействие лекарственных средств обычно подразделяют на фармакологическое и фармацевтическое .

Фармакологическое взаимодействие основано на изменении фармакокинетики и фармакодинамики лекарственных средств, химическом и физико-химическом взаимодействии лекарственных средств в средах организма.

Фармацевтическое взаимодействие связано с комбинациями различных лекарственных средств, нередко используемых для усиления или сочетания эффектов, полезных в медицинской практике. Вместе с тем при сочетании веществ может возникать и неблагоприятное взаимодействие, которое обозначается как несовместимость лекарственных средств. Проявляется несовместимость ослаблением, полной утратой или изменением характера фармакотерапевтического эффекта либо усилением побочного или токсического действия. Это происходит при одновременном назначении двух или более лекарственных средств (фармакологическая несовместимость). Несовместимость возможна также при изготовлении и хранении комбинированных препаратов (фармацевтическая несовместимость).

2. Фармакологическое взаимодействие

I. Фармакокинетический тип взаимодействия может проявляться уже на этапе всасывания вещества, которое может изменяться по разным причинам. Так, в пищеварительном тракте возможны связывание веществ адсорбентами (активированным углем, белой глиной) или анионообменными смолами (холестирамин), образование неактивных хелатных соединений или комплексонов (по такому принципу взаимодействуют антибиотики группы тетрациклина с ионами железа, кальция и магния). Все эти варианты взаимодействия препятствуют всасыванию лекарственных средств и уменьшают их фармакотерапевтические эффекты. Для всасывания ряда веществ из пищеварительного тракта важное значение имеет величина рН среды. Так, изменяя реакцию пищеварительных соков, можно существенно влиять на скорость и полноту абсорбции слабокислых и слабощелочных соединений.

Изменение перистальтики пищеварительного тракта также сказывается на всасывании веществ. Например, повышение холиномиметиками перистальтики кишечника снижает всасывание дигоксина. Кроме того, известны примеры взаимодействия веществ на уровне их транспорта через слизистую оболочку кишечника (барбитураты уменьшают всасывание гризеофульвина.

Угнетение активности ферментов также может влиять на всасывание. Так, дифенин ингибирует фолатдеконъюгазу и нарушает всасывание фолиевой кислоты из пищевых продуктов. В результате развивается недостаточность фолиевой кислоты. Некоторые вещества (алмагель, вазелиновое масло) образуют слои на поверхности слизистой оболочки пищеварительного тракта, что может несколько затруднять всасывание лекарственных средств.

Взаимодействие веществ возможно на этапе их транспорта с белками крови. В этом случае одно вещество может вытеснять другое из комплекса с белками плазмы крови. Так, индометацин и бутадион высвобождают из комплекса с белками плазмы антикоагулянты непрямого действия, что повышает концентрацию свободных антикоагулянтов и может привести к кровотечению.

Некоторые лекарственные вещества способны взаимодействовать на уровне биотрансформации веществ. Есть препараты, которые повышают (индуцируют) активность микросомальных ферментов печени (фенобарбитал, дифенин и др.). На фоне их действия биотрансформация многих веществ протекает более интенсивно.

Это снижает выраженность и продолжительность их эффекта. Возможно также взаимодействие лекарственных средств, связанное с ингибирующим влиянием на микросомальные и немикросомальные ферменты. Так, противоподагрический препарат аллопуринол повышает токсичность противоопухолевого препарата меркаптопурина.

Выведение лекарственных веществ также может существенно изменяться при комбинированном применении веществ. Реабсорбция в почечных канальцах слабокислых и слабощелочных соединений зависит от значения рН первичной мочи. Изменяя ее реакцию, можно повысить или понизить степень ионизации вещества. Чем меньше степень ионизации вещества, тем выше его липофильность и тем интенсивнее протекает реабсорбция в почечных канальцах. Более ионизированные вещества плохо реабсорбируются и в большей степени выделяются с мочой. Для подщелачивания мочи используется натрия гидрокарбонат, а для подкисления – аммония хлорид.

Следует иметь в виду, что при взаимодействии веществ их фармакокинетика может меняться на нескольких этапах одновременно.

II. Фармакодинамический тип взаимодействия. Если взаимодействие осуществляется на уровне рецепторов, то оно в основном касается агонистов и антагонистов различных типов рецепторов.

В случае синергизма взаимодействие веществ сопровождается усилением конечного эффекта. Синергизм лекарственных веществ может проявляться простым суммированием или потенциированием конечного эффекта. Суммированный (аддитивный) эффект наблюдается при простом сложении эффектов каждого из компонентов. Если при введении двух веществ общий эффект превышает сумму эффектов обоих веществ, то это свидетельствует о потенцировании.

Синергизм может быть прямой (если оба соединения действуют на один субстрат) или косвенный (при разной локализации их действия).

Способность одного вещества в той или иной степени уменьшать эффект другого называют антагонизмом. По аналогии с синергизмом он может быть прямым и косвенным.

Кроме того, выделяют синергоантагонизм, при котором одни эффекты комбинируемых веществ усиливаются, а другие ослабляются.

III. Химическое или физико-химическое взаимодействие веществ в средах организма чаще всего используется при передозировке или остром отравлении лекарственными средствами. При передозировке антикоагулянта гепарина назначают его антидот – протамина сульфат, который инактивирует гепарин за счет электростатического взаимодействия с ним (физико-химическое взаимодействие). Примером химического взаимодействия является образование комплексонов. Так, ионы меди, ртути, свинца, железа и кальция связывают пеницилламин.

Лекция 9. Взаимодействие лекарственных средств (часть 2)

1. Фармацевтическое взаимодействие

Возможны случаи фармацевтической несовместимости, при которой в процессе изготовления препаратов и (или) их хранения, а также при смешивании в одном шприце происходит взаимодействие компонентов смеси и наступают такие изменения, в результате которых препарат становится непригодным для практического использования. В некоторых случаях появляются новые, иногда неблагоприятные (токсические) свойства. Несовместимость может быть обусловлена недостаточной растворимостью или полной нерастворимостью веществ в растворителе, коагуляцией лекарственных форм, расслоением эмульсии, отсыреванием и расплавлением порошков в связи с их гигроскопичностью, возможна нежелательная абсорбция активных веществ. В неправильных рецептурных прописях в результате химического взаимодействия веществ иногда образуется осадок или изменяются цвет, вкус, запах и консистенция лекарственной формы.

2. Значение индивидуальных особенностей организма и его состояния для проявления действия лекарственных средств

I. Возраст. Чувствительность к лекарственным средствам меняется в зависимости от возраста. В связи с этим в качестве самостоятельной дисциплины выделилась перинатальная фармакология, исследующая особенности влияния лекарственных средств на плод (за 24 недели до родов и до 4 недель после рождения). Раздел фармакологии, изучающий особенности действия лекарственных препаратов на детский организм, называется педиатрической фармакологией.

Для лекарственных веществ (кроме ядовитых и сильнодействующих) существует упрощенное правило расчета веществ для детей разного возраста, исходящее из того, что на каждый год ребенка требуется 1/20 дозы взрослого.

В пожилом и старческом возрасте замедляется всасывание лекарственных веществ, менее эффективно протекает их метаболизм, снижается скорость экскреции препаратов почками. Выяснением особенностей действия и применения лекарственных средств у лиц пожилого и старческого возраста занимается гериатрическая фармакология.

II. Пол. К ряду веществ (никотин, стрихнин) мужские особи менее чувствительны, чем женские.

III. Генетические факторы. Чувствительность к лекарственным средствам может быть обусловлена генетически. Например, при генетической недостаточности холинэстеразы плазмы крови длительность действия миорелаксанта дитилина резко возрастает и может достигать 6–8 ч (в нормальных условиях – 5–7 мин.).

Известны примеры атипичных реакций на вещества (идиосинкразия). Например, противомалярийные средства из группы 8-аминохинолина (примахин) у лиц с генетической энзимопатией могут вызвать гемолиз. Известны и другие вещества с потенциальным гемолитическим действием: сульфаниламиды (стрептоцид, сульфацил-натрий), нитрофураны (фуразолидон, фурадонин), ненаркотические анальгетики (аспирин, фенацетин).

IV. Состояние организма. Жаропонижающие средства действуют только при лихорадке (при нормотермии они неэффективны), а сердечные гликозиды – только на фоне сердечной недостаточности. Заболевания, сопровождающиеся нарушением функции печени и почек, изменяют биотрансформацию и экскрецию веществ. Фармакокинетика лекарственных средств также изменяется при беременности и ожирении.

V. Значение суточных ритмов. Исследование зависимости фармакологического эффекта лекарственных препаратов от суточного периодизма является одной из основных задач хронофармакологии. В большинстве случаев наиболее выраженный эффект веществ отмечается в период максимальной активности. Так, у человека действие морфина более выражено в начале второй половины дня, чем утром или ночью.

Фармакокинетические параметры тоже зависят от суточных ритмов. Наибольшее всасывание гризеофульвина происходит примерно в 12 ч дня. В течение суток существенно меняются интенсивность метаболизма веществ, функция почек и их способность экскретировать фармакологические вещества.

Рисунок 1. Типы молекулярных мишеней для действия лекарственных средств .

Молекулярная мишень -- это молекула или молекулярный ансамбль, имеющий специфический центр связывания для биологически активного соединения. Молекулярная мишень может быть представлена мембранными белками, распознающими гормоны или нейротрансмиттеры (рецепторы), а также ионными каналами, нуклеиновыми кислотами, молекулами-переносчиками или ферментами. Как видно из Рисунка 2, не все лекарственные соединения воздействуют на рецепторы. Большинство лекарственных средств должны связаться с молекулярной мишенью, чтобы произвести эффект, но существуют и исключения. Уже в первых исследованиях эффектов лекарств на тканях животных в конце XIX в. стало ясно, что большинство ФАВ реализуют специфическое действие в определенных тканях, т.е. соединение, которое оказывает эффект на один тип ткани, может не влиять на другой; одно и то же вещество может оказывать совершенно разные эффекты на разные ткани. Например, алкалоид пилокарпин, как и нейротрансмиттер ацетилхолин, вызывает сокращение гладких мышц кишечника и тормозит частоту сердечных сокращений. С учетом этих феноменов Сэмуэль Лэнгли (1852-1925) в 1878 г., основываясь на изучении эффектов алкалоидов пилокарпина и атропина на слюноотделение, предположил, что «существуют некие рецепторные вещества... с которыми оба могут образовывать соединения». Позже, в 1905 г., изучая действие никотина и кураре на скелетные мышцы, он обнаружил, что никотин вызывает сокращения, когда действует на определенные небольшие участки мышц. Лэнгли заключил, что «рецепторная субстанция» для никотина находится в этих участках и что кураре действует путем блокады взаимодействия никотина с рецептором .


Рисунок 2. Эффективность по отношению к эндогенному агонисту.

Таким образом, очевидно, что действие некоторых соединение может быть обусловлено не столько развитием биологического ответа на связывание с молекулярной мишенью, сколько препятствием связыванию эндогенного лиганда. Действительно, если рассматривать взаимодействие лиганда и рецептора, можно отметить, что существующие в настоящее время лекарственные соединения могут играть роль как агониста, так и антагониста. На Рисунке 3 можно увидеть более подробную классификацию лигандов по отношению к эффектам, ими обусловленными. Агонисты различаются по силе и направлению физиологического ответа, вызываемого ими. Данная классификация не связана с аффинностью лигандов и опирается лишь на величину отклика рецептора. Таким образом, можно выделить следующие классы агонистов:

o Суперагонист -- соединение, способное вызывать более сильный физиологический ответ, чем эндогенный агонист.

o Полный агонист -- соединение, вызывающее такой же отклик, как эндогенный агонист (например, изопреналин, агонист в-адренорецепторов).

o В случае меньшего отклика соединение называют частичным агонистом (например, арипипразол -- частичный агонист дофаминовых и серотониновых рецепторов).

o В случае если у рецептора имеется базальная (конститутивная) активность, некоторые вещества -- обратные агонисты -- могут уменьшать её. В частности, обратные агонисты рецепторов ГАМК A обладают анксиогенным или спазмогеннымдействием, однако могут усиливать когнитивные способности .

Рассматривая механизм связывания лиганда и рецепторной молекулы, можно увидеть, что специфичность и сила связывания обусловлена особенностями строения обоих компонентов. В частности, важную роль играет активный центр белков - определённый участок белковой молекулы, как правило, находящийся в её углублении ("кармане"), сформированный радикалами аминокислот, собранных на определённом пространственном участке при формировании третичной структуры и способный комплементарно связываться с лигандом. В линейной последовательности полипептидной цепи радикалы, формирующие активный центр, могут находиться на значительном расстоянии друг от друга.

Высокая специфичность связывания белка с лигандом обеспечивается комплементарностью структуры активного центра белка структуре лиганда. Под комплементарностью понимают пространственное и химическое соответствие взаимодействующих молекул. Лиганд должен обладать способностью входить и пространственно совпадать с конформацией активного центра. Это совпадение может быть неполным, но благодаря конформационной лабильности белка активный центр способен к небольшим изменениям и "подгоняется" под лиганд. Кроме того, между функциональными группами лиганда и радикалами аминокислот, образующих активный центр, должны возникать связи, удерживающие лиганд в активном центре. Связи между лигандом и активным центром белка могут быть как нековалентными (ионными, водородными, гидрофобными), так и ковалентными. Активный центр белка - относительно изолированный от окружающей белок среды участок, сформированный аминокислотными остатками. В этом участке каждый остаток благодаря своему индивидуальному размеру и функциональным группам формирует "рельеф" активного центра.

Объединение таких аминокислот в единый функциональный комплекс изменяет реакционную способность их радикалов, подобно тому, как меняется звучание музыкального инструмента в ансамбле. Поэтому аминокислотные остатки, входящие в состав активного центра, часто называют "ансамблем" аминокислот.

Уникальные свойства активного центра зависят не только от химических свойств формирующих его аминокислот, но и от их точной взаимной ориентации в пространстве. Поэтому даже незначительные нарушения общей конформации белка в результате точечных изменений его первичной структуры или условий окружающей среды могут привести к изменению химических и функциональных свойств радикалов, формирующих активный центр, нарушать связывание белка с лигандом и его функцию. При денатурации активный центр белков разрушается, и происходит утрата их биологической активности.

Часто активный центр формируется таким образом, что доступ воды к функциональным группам его радикалов ограничен, т.е. создаются условия для связывания лиганда с радикалами аминокислот.

В некоторых случаях лиганд присоединяется только к одному из атомов, обладающему определённой реакционной способностью, например присоединение О 2 к железу миоглобина или гемоглобина. Однако свойства данного атома избирательно взаимодействовать с О 2 определяются свойствами радикалов, окружающих атом железа в составе тема. Гем содержится и в других белках, таких как цитохромы. Однако функция атома железа в цитохромах иная, он служит посредником для передачи электронов от одного вещества другому, при этом железо становится то двух-, то трёхвалентным.

Центр связывания белка с лигандом часто располагается между доменами. Например, протеолитический фермент трипсин, участвующий в гидролизе пептидных связей пищевых белков в кишечнике, имеет 2 домена, разделённых бороздкой. Внутренняя поверхность бороздки формируется аминокислотными радикалами этих доменов, стоящими в полипептидной цепи далеко друг от друга (Сер 177 , Гис 40 , Асп 85).

Разные домены в белке могут перемещаться друг относительно друга при взаимодействии с лигандом, что облегчает дальнейшее функционирование белка. В качестве примера можно рассмотреть работу гексокиназы, фермента, катализирующего перенос фосфорного остатка с АТФ на молекулу глюкозы (при её фосфорилировании). Активный центр гексокиназы располагается в расщелине между двумя доменами. При связывании гексокиназы с глюкозой окружающие её домены сближаются, и субстрат оказывается в "ловушке", что облегчает его дальнейшее фосфорилирование.

Основное свойство белков, лежащее в основе их функций, - избирательность присоединения к определённым участкам белковой молекулы специфических лигандов.

Классификация лигандов

· Лигандами могут быть неорганические (часто ионы металлов) и органические вещества, низкомолекулярные и высокомолекулярные вещества;

· существуют лиганды, которые изменяют свою химическую структуру при присоединении к активному центру белка (изменения субстрата в активном центре фермента);

· существуют лиганды, присоединяющиеся к белку только в момент функционирования (например, О 2 , транспортируемый гемоглобином), и лиганды, постоянно связанные с белком, выполняющие вспомогательную роль при функционировании белков (например, железо, входящее в состав гемоглобина).

В тех случаях, когда аминокислотные остатки, формирующие активный центр, не могут обеспечить функционирование данного белка, к определённым участкам активного центра могут присоединяться небелковые молекулы. Так, в активном центре многих ферментов присутствует ион металла (кофактор) или органическая небелковая молекула (кофермент). Небелковую часть, прочно связанную с активным центром белка и необходимую для его функционирования, называют"простатическая группа". Миоглобин, гемоглобин и цитохромы имеют в активном центре простетическую группу - гем, содержащий железо.

Соединение протомеров в олигомерном белке - пример взаимодействия высокомолекулярных лигандов. Каждый протомер, соединённый с другими протомерами, служит для них лигандом, так же как они для него.

Иногда присоединение какого-либо лиганда изменяет конформацию белка, в результате чего формируется центр связывания с другими лигандами. Например, белок кальмодулин после связывания с четырьмя ионами Са 2+ в специфических участках приобретает способность взаимодействовать с некоторыми ферментами, меняя их активность .

Важным понятием в теории взаимодействия лиганда и активного центра биологической мишени является «комплементарность». Активный центр фермента должен определенным образом соответствовать лиганду, что отражается в некоторых требованиях, предъявляемых к субстрату.

Рисунок 3. Схема взаимодействия лиганда и молекулярной мишени.

Так, например, ожидаемо, что для успешного взаимодействия необходимо соответствие размеров активного центра и лиганда (см. 2 положение на рисунке 3), что позволяет повысить специфичность взаимодействия и оградить активный центр от заведомо неподходящих субстратов. Вместе с тем, при возникновении комплекса «активный центр-лиганд» возможны следующие виды взаимодействий:

· вандерваальсовы связи (положение 1, рисунок 3), обусловленые флуктуациями электронных облаков вокруг противоположно поляризованных соседних атомов;

· электростатические взаимодействия (положение 3, рисунок 3), возникающие между противоположно заряженными группами;

· гидрофобные взаимодействия (положение 4, рисунок 3), обусловленные взаимным притяжением неполярных поверхностей;

· водородные связи (положение 5, рисунок 3), возникающие между подвижным атомом водорода и электроотрицательными атомами фтора, азота или кислорода.

Несмотря на относительно малую силу описанных взаимодействий (в сравнении с ковалентными связями), не стоит недооценивать их важность, отражающуюся в повышении аффинности связывания.

Обобщая вышесказанное, можно отметить, что процесс связывания лиганда и молекулярной мишени представляет собой высокоспецифический процесс, контролируемый как размером лиганда, так и его строением, что позволяет обеспечить селективность взаимодействия. Тем не менее, возможно взаимодействие между белком и не свойственным ему субстратом (т.н. конкурентное ингибирование), которое выражается в связывании с активного центра со схожим, но не целевым лигандом. Стоит отметить, что конкурентное ингибирование возможно как в естественных условиях (ингибирование малонатом фермента сукцинатдегидрогеназы, ингибирование фумаратгидратазы пиромеллитовой кислотой ), так и искусственно, во время приема лекарственных средств (ингибирование моноаминооксидазы ипрониазидом, ниаламидом, ингибирование дигидроптероатсинтетазы сульфаниламидами - структурными аналогами пара-аминобензойной кислоты, ингибирование ангиотензинпревращающего фермента каптоприлом, эналаприлом).

Таким образом, существует возможность целенаправленного изменения активности многих молекулярных систем при помощи синтетических соединений, имеющих строение, схожее с естественными субстратами.

Тем не менее, поверхностное понимание механизмов взаимодействия лигандов и молекулярных мишеней может быть чрезвычайно опасно и, зачастую, приводить к трагическим последствиям. Наиболее известным случаем можно считать т.н. «талидомидовую трагедию», которая привела вследствие приема беременными женщинами недостаточно изученного лекарственного соединения талидомида к рождение тысяч детей с врожденными уродствами.

Фармакодинамика - раздел клинической фармакологии, изучающий механизмы действия, характер, силу и длительность фармакологических эффектов ЛС, используемых в клинической практике.

Пути воздействия ЛС на организм человека

Большинство ЛС, связываясь с рецепторами или другими молекулами-мишенями, образуют комплекс «ЛС-рецептор», при этом происходит запуск определённых физиологических или биохимических процессов (или количественное их изменение) в организме человека. В таком случае говорят о прямом действии ЛС. Структура ЛС прямого действия, как правило, аналогична строению эндогенного медиатора (однако при взаимодействии ЛС и медиатора с рецептором нередко регистрируют различные эффекты).

Группы лекарственных средств

Для удобства примем величину эффекта эндогенного медиатора, связывающегося с рецептором, равной единице. Существует классификация ЛС, созданная на основе данного предположения.

Агонисты - ЛС, связывающиеся с теми же рецепторами, что и эндогенные медиаторы. Агонисты производят эффект, равный единице (или больше единицы).

Антагонисты - ЛС, соединяющиеся с теми же рецепторами, что и эндогенные медиаторы; не оказывают никакого действия (в таком случае говорят о «нулевом эффекте»).

Частичные агонисты или агонисты-антагонисты - ЛС, связывающиеся с тем же рецепторами, что и эндогенные медиаторы. Эффект, регистрируемый при взаимодействии частичного агониста с рецептором, всегда больше нуля, но меньше единицы.

Все естественные медиаторы - агонисты своих рецепторов.

Нередко отмечают опосредованное действие, заключающееся в изменении активности молекул-мишеней под влиянием ЛС (воздействует таким образом на различные метаболические процессы).

Молекулы-мишени ЛС

ЛС, связываясь с молекулой-мишенью, принадлежащей клетке (или расположенной внеклеточно), модифицирует её функциональный статус, приводя к усилению, ослаблению или стабилизации филогенетически детерминированных реакций организма.

Рецепторы.

- Мембранные (рецепторы I, II и III типов).

- Внутриклеточные (рецепторы IV типа).

Нерецепторные молекулы-мишени цитоплазматической мембраны.

- Цитоплазматические ионные каналы.

- Неспецифические белки и липиды цитоплазматической мембраны.

Иммуноглобулиновые молекулы-мишени.

Ферменты.

Неорганические соединения (например, соляная кислота и металлы).

Молекулы-мишени обладают комплементарностью к эндогенным медиаторам и соответствующим ЛС, заключающейся в определён- ном пространственном расположении ионных, гидрофобных, нуклеофильных или электрофильных функциональных групп. Многие ЛС (антигистаминные препараты I поколения, трициклические антидепрессанты и некоторые другие) могут связываться с морфологически близкими, но функционально отличающимися молекуламимишенями.

Виды связей лекарственных средств с молекулами-мишенями

Самые слабые связи между ЛС и молекулой-мишенью - ван-дерваальсовые связи, обусловленные дипольными взаимодействиями; наиболее часто определяют специфичность взаимодействия препарата и молекулы-мишени. Гидрофобные связи, характерные для ЛС стероидной структуры, более сильные. Гидрофобные свойства глюкокортикостероидных гормонов и липидного бислоя плазматической мембраны позволяют таким ЛС легко проникать через цитоплазматическую и внутриклеточную мембраны внутрь клетки и ядра к своим рецепторам. Ещё более сильные водородные связи образуются между атомами водорода и кислорода соседних молекул. Водородные и вандер-ваальсовые связи возникают при наличии комплементарности ЛС и молекул-мишеней (например, между агонистом или антагонистом и рецептором). Их сила достаточна для образования комплекса ЛС-ре- цептор.

Наиболее сильные связи - ионные и ковалентные. Ионные связи формируются, как правило, между ионами металлов и остатками сильных кислот (антациды) при поляризации. При соединении ЛС и рецептора возникают необратимые ковалентные связи. Антагонис-

ты необратимого действия связываются с рецепторами ковалентно. Большое значение имеет образование координационных ковалентных связей. Стабильные хелатные комплексы (например, соединение ЛС и его антидота - унитиола* с дигоксином) - простая модель координационной ковалентной связи. При формировании ковалентной связи обычно происходит «выключение» молекулы-мишени. Этим объясняют формирование стойкого фармакологического эффекта (антиагрегантный эффект ацетилсалициловой кислоты - результат её необратимого взаимодействия с циклооксигеназой тромбоцитов), а также развитие некоторых побочных эффектов (ульцерогенное влияние ацетилсалициловой кислоты - следствие образования неразрывной связи между данным лекарственным веществом и циклооксигеназой клеток слизистой оболочки желудка).

Нерецепторные молекулы-мишени плазматической мембраны

Препараты, используемые для ингаляционного наркоза - пример ЛС, связывающихся с нерецепторными молекулами-мишенями плазматической мембраны. Средства для ингаляционного наркоза (галотан, энфлуран*) неспецифически соединяются с белками (ионными каналами) и липидами плазматической мембраны центральных нейронов. Существует мнение, что в результате такого связывания препараты нарушают проводимость ионных каналов (в том числе натриевых), приводя к увеличению порога потенциала действия и уменьшению частоты его возникновения. Средства для ингаляционного наркоза, соединяясь с элементами мембран центральных нейронов, вызывают обратимое изменение их упорядоченной структуры. Данный факт под- тверждён экспериментальными исследованиями: анестезированные животные быстро выходят из состояния общего наркоза при помещении их в гипербарическую камеру, где происходит восстановление мембранных нарушений.

Нерецепторные плазматические структуры (потенциал-зависимые натриевые каналы) также выполняют функции молекул-мишеней местных анестетиков. ЛС, связываясь с потенциал-зависимыми натриевыми каналами аксонов и центральных нейронов, блокируют каналы, и, таким образом, нарушают их проводимость для ионов натрия. В результате происходит нарушение деполяризации клетки. Терапевтические дозы местных анестетиков блокируют проводимость периферических нервов, а токсические их количества угнетают и центральные нейроны.

У некоторых ЛС отсутствуют свои молекулы-мишени. Однако такие препараты выполняют функцию субстратов для многих метаболических реакций. Существует понятие «субстратного действия» ЛС:

их применяют для восполнения недостатка различных необходимых организму субстратов (например, аминокислоты, витамины, витаминно-минеральные комплексы и глюкоза).

Рецепторы

Рецепторы - белковые макромолекулы или полипептиды, нередко соединённые с полисахаридными ветвями и остатками жирных кислот (гликопротеины, липопротеины). Каждое ЛС можно сравнить с ключом, подходящим к своему замку - специфическому рецептору данного вещества. Однако только часть молекулы рецептора, называемая сайтом связывания, представляет «замочную скважину». ЛС, соединяясь с рецептором, потенцирует формирование в нём конформационных изменений, приводящих к функциональным изменениям других частей рецепторной молекулы.

Типичная схема работы рецепторов включает четыре этапа.

Связывание ЛС с рецептором, расположенным на клеточной поверхности (или внутриклеточно).

Образование комплекса ЛС-рецептор и, следовательно, изменение конформации рецептора.

Передача сигнала от комплекса ЛС-рецептор к клетке через различные эффекторные системы, многократно усиливающие и интерпретирующие этот сигнал.

Клеточный ответ (быстрый и отсроченный).

Выделяют четыре фармакологически значимых типа рецепторов

Рецепторы - ионные каналы.

Рецепторы, сопряжённые с G-белками.

Рецепторы, обладающие тирозинкиназной активностью.

Внутриклеточные рецепторы. Мембранные рецепторы

Рецепторы I, II и III типов встроены в плазматическую мембрану - трансмембранные белки по отношению к клеточной мембране. Рецепторы IV типа расположены внутриклеточно - в ядре и других субклеточных структурах. Кроме того, выделяют иммуноглобулиновые рецепторы, представляющие гликопротеиновые макромолекулы.

Рецепторы I типа имеют вид и строение ионных каналов, обладают сайтами связывания со специфическим ЛС или медиатором, индуцирующим открытие ионного канала, образованного рецептором. Один из представителей I типа рецепторов - N-холинорецептор - гликопротеин, состоящий из пяти трансмембранных полипептидных субъединиц. Выделяют четыре вида субъединиц - α, β, γ и δ тип. В состав гликопротеина входят по одной субъединице β, γ и δ типа и

две α субъединицы. Трансмембранные полипептидные субъединицы имеют вид цилиндров, пронизывающих мембрану и окружающих узкий канал. Каждый тип субъединиц кодирует собственный ген (однако гены обладают значительной гомологией). Участки связывания ацетилхолина локализуются на «внеклеточных концах» α-субъединиц. При связывании ЛС с этими участками наблюдают конформационные изменения, приводящие к расширению канала и облегчению проводимости ионов натрия, а следовательно, к деполяризации клетки.

К I типу рецепторов, кроме N-холинорецептора, относят также ГАМК А -рецептор, глициновые и глутаматные рецепторы.

Рецепторы, сопряжённые с G-белками (II тип) - самая многочисленная группа рецепторов, обнаруженных в организме человека; выполняют важные функции. С рецепторами II типа связываются большинство нейромедиаторов, гормонов и ЛС. К наиболее распро- странённым клеточным рецепторам этого типа относят вазопрессиновые и ангиотензиновые, α-адренорецепторы, β-адренорецепторы и м-холинорецепторы, опиатные и дофаминовые, аденозиновые, гистаминовые и многие другие рецепторы. Все вышеперечисленные рецепторы - мишени ЛС, составляющих обширные фармакологические группы.

Каждый рецептор второго типа представляет полипептидную цепь с N-концом (расположен во внеклеточной среде) и С-концом (локализован в цитоплазме). При этом полипептидная цепь рецептора семь раз пронизывает плазматическую мембрану клетки (имеет семь трансмембранных сегментов). Таким образом, структуру рецептора II типа можно сравнить с нитью, поочерёдно прошивающей ткань с обеих сторон семь раз. Специфичность различных рецепторов второго типа зависит не только от аминокислотной последовательности, но и от длины и соотношения «петель», выпячивающихся наружу и внутрь клетки.

Рецепторы второго типа образуют комплексы с мембранными G-белками. G-белки состоят из трёх субъединиц: α, β и γ. После связывания рецептора с ЛС образуется комплекс ЛС-рецептор. Затем в рецепторе происходят конформационные изменения. G-белок, связываясь одной или двумя субъединицами со своими «мишенями», активирует или ингибирует их. Аденилатциклаза, фосфолипаза С, ионные каналы, циклический гуанозинмонофосфат (цГМФ)-фосфодиэстераза - мишени G-белка. Как правило, активированные ферменты передают и усиливают «сигнал» через системы вторичных посредников.

Рецепторы с тирозинкиназной активностью

Рецепторы с тирозинкиназной активностью (III тип) - рецепторы пептидных гормонов, регулирующих рост, дифференцировку и

развитие. К пептидным гормонам относят, например, инсулин, эпидермальный фактор роста, фактор роста тромбоцитов. Как правило, связывание рецептора с гормоном активирует тирозиновую протеинкиназу, представляющую цитоплазматическую часть (домен) рецептора. Мишень протеинкиназы - рецептор, обладающий способностью к аутофосфорилированию. Каждый полипептидный рецептор имеет один трансмембранный сегмент (домен).

Однако, как показали исследования, не тирозиновая протеинкиназа, а гуанилатциклаза, катализирующая образование вторичного посредника цГМФ, выполняет функции цитоплазматического домена рецептора предсердного натрийуретического пептида.

Внутриклеточные рецепторы

К внутриклеточным рецепторам (IV тип) относят рецепторы глюкокортикостероидных и тиреоидных гормонов, а также рецепторы ретиноидов и витамина D. В состав группы внутриклеточных рецепторов входят рецепторы, не связанные с плазматической мембраной, локализованные внутри ядра клетки (это главное отличие).

Внутриклеточные рецепторы представляют растворимые ДНК-связывающие белки, регулирующие транскрипцию определённых генов. Каждый рецептор IV типа состоит из трёх доменов - гормон-связывающего, центрального и N-терминального (домен N-конца молекулы рецептора). Эти рецепторы качественно и количественно регулируют уровень транскрипции определённого «набора» генов, специфичного для каждого рецептора, а также вызывают модификацию биохимического и функционального статуса клетки и её метаболических процессов.

Эффекторные системы рецепторов

Существуют различные способы передачи сигналов, формирующихся в процессе функционирования рецепторов, клетке. Путь передачи сигнала зависит от типа рецептора (табл. 2-1).

Главные вторичные посредники - циклический аденозинмонофосфат (цАМФ), ионы кальция, инозитолтрифосфат и диацилглицерол.

Иммуноглобулины (иммуноглобулиновые рецепторы)

С помощью иммуноглобулиновых рецепторов клетки имеют возможность «узнавать» друг друга или антигены. В результате взаимодействия рецепторов происходит адгезия клетки с клеткой или клетки с антигеном. К рецепторам этого типа относят и антитела, свободно циркулирующие во внеклеточных жидкостях и не связанные с клеточными структурами. Антитела, «маркируя» антигены для последующего фагоцитоза, отвечают за развитие гуморального иммунитета.

Таблица 2-1. Эффекторные системы рецепторов

Тип рецептора Пример рецептора Способы передачи сигналов

К типу иммуноглобулинов принадлежат рецепторы, выполняющие функцию «сигнализации» при формировании различных видов и фаз иммунного ответа и иммунной памяти.

Основные представители рецепторов иммуноглобулинового типа (суперсемейства).

Антитела - иммуноглобулины (Ig).

Т-клеточные рецепторы.

Гликопротеины МНС I и МНС II (Major Histocompatibility Complex - главный комплекс гистосовместимости).

Гликопротеины клеточной адгезии (например, CD2, CD4 и CD8).

Некоторые полипептидные цепи комплекса CD3, ассоциированного с Т-клеточными рецепторами.

Fc-рецепторы, расположенные на различных типах лейкоцитов (лимфоциты, макрофаги, нейтрофилы).

Функциональная и морфологическая обособленность иммуноглобулиновых рецепторов позволяет выделить их в отдельный тип.

Ферменты

Многие ЛС, связываясь с ферментами, обратимо или необратимо ингибируют или активируют их. Так, антихолинэстеразные средства усиливают действие ацетилхолина, блокируя расщепляющий его фермент - ацетилхолинэстеразу. Ингибиторы карбоангидразы - группа диуретиков, опосредованно (под влиянием карбоангидразы) уменьшающих реабсорбцию ионов натрия в проксимальных канальцах. НПВС - ингибиторы циклооксигеназы. Однако ацетилсалициловая кислота, в отличие от других НПВС, необратимо блокирует циклооксигеназу, ацетилируя остатки серина (аминокислота) в молекуле фермента. Существует два поколения ингибиторов моноаминоксидазы (МАО). Ингибиторы МАО - ЛС, относящиеся к группе антидепрессантов. Ингибиторы МАО первого поколения (например, фенелзин и изокарбоксазид) необратимо блокируют фермент, окисляющий такие моноамины, как, норадреналин* и серотонин (их недостаток обнаруживают при депрессии). Новое поколение ингибиторов МАО (например, моклобемид) обратимо ингибирует фермент; при этом отмечают меньшую выраженность побочных эффектов (в частности, «тираминового» синдрома).

Неорганические соединения

Существуют ЛС, направленно нейтрализующие или связывающие активные формы различных неорганических соединений. Так, антациды нейтрализуют избыток соляной кислоты желудочного сока, умень-

шая её повреждающее действие на слизистую оболочку желудка и двенадцатиперстной кишки.

Хелатообразующие вещества (комплексоны), соединяясь с опре- делёнными металлами, образуют химически инертные комплексные соединения. Этот эффект используют при лечении отравлений, вызванных приёмом внутрь (или ингаляционно) веществ, содержащих различные металлы (мышьяк, свинец, железо, медь).

Молекулы-мишени, расположенные на чужеродных организмах

Механизмы действия антибактериальных, антипротозойных, антигельминтозных, противогрибковых и противовирусных ЛС очень разнообразны. Приём антибактериальных препаратов, как правило, приводит к нарушению различных этапов синтеза клеточной стенки бактерий (например, к синтезу дефектных белков или РНК в бактериальной клетке) или изменению других механизмов поддержания жизнедеятельности микроорганизма. Подавление или эрадикация возбудителя инфекции - главная цель лечения.

Механизм бактерицидного действия β-лактамных антибиотиков, гликопептидов и изониазида - блокада различных этапов синтеза клеточной стенки микроорганизмов. Все β-лактамные антибиотики (пенициллины, цефалоспорины, карбапенемы и монобактамы) обладают сходным принципом действия. Пенициллины производят бактерицидный эффект, связываясь с пенициллинсвязывающими белками бактерий (выполняют функции ферментов на завершающем этапе синтеза основного компонента клеточной стенки бактерий - пептидогликана). Общность механизма действия β-лактамных антибиотиков заключается в создании препятствий для образования связей между полимерными цепями пептидогликанов с помощью пентаглициновых мостиков (часть структуры антибактериальных препаратов напоминает D-аланил-D-аланин-пептидную цепь клеточной стенки бактерий). Гликопептиды (ванкомицин и тейкопланин*) нарушают синтез клеточной стенки другим способом. Так, ванкомицин оказывает бактерицидное действие, соединяясь со свободной карбоксильной группой пентапептида; таким образом, возникает пространственное препятст-

вие элонгации (удлинения) пептидогликанового хвоста. Изониазид (противотуберкулёзное ЛС) ингибирует синтез миколевых кислот - структурного компонента микобактериальной клеточной стенки.

Механизм бактерицидного действия полимиксинов состоит в нарушении целостности цитоплазматической мембраны бактерий.

Аминогликозиды, тетрациклины, макролиды и левомицетин* угнетают синтез белка бактериальных клеток. Рибосомы бактерий (50S- субъединицы и 30S-субъединицы) и рибосомы человека (6OS-субъеди- ницы и 40S-субъединицы) имеют различную структуру. Этим объясняют избирательное влияние названных групп лекарственных веществ на микроорганизмы. Аминогликозиды и тетрациклины соединяются с 30S-субъединицей рибосомы и ингибируют связывание аминоацилтРНК с А-участком этой тРНК. Кроме того, аминогликозиды нарушают процессы считывания мРНК, блокируя синтез белка. Левомицетин * изменяет процесс транспептидации (перенос растущей аминокислотной цепи на рибосоме с Р-участка на А-участок к вновь приносимым тРНК аминокислотам). Макролиды связываются с 50S-субъединицей рибосомы и ингибируют процесс транслокации (перенос аминокислотной цепи с А-участка на Р-участок).

Хинолоны и фторхинолоны угнетают ДНК-гиразы (топоизомеразу II и топоизомеразу IV) - ферменты, способствующие скручиванию бактериальной ДНК в спираль, необходимую для нормального её функционирования.

Сульфаниламиды ингибируют дигидроптероатсинтетазу, тем самым блокируя синтез предшественников пуринов и пиримидинов (дигидроптеровой и дигидрофолиевой кислот), необходимых для построения ДНК и РНК. Триметоприм угнетает дигидрофолатредуктазу (сродство к бактериальному ферменту очень высоко), нарушая образование тетрагидрофолиевой кислоты (предшественника пуринов и пиримидинов) из дигидрофолиевой. Итак, сульфаниламиды и триметоприм действуют в синергизме, блокируя разные стадии одного процесса - синтеза пуринов и пиримидинов.

5-Нитроимидазолы (метронидазол, тинидазол) оказывают избирательное бактерицидное действие в отношении бактерий, ферментные системы которых способны восстанавливать нитрогруппу. Активные восстановленные формы этих ЛС, нарушая репликацию ДНК и синтез белка, ингибируют тканевое дыхание.

Рифампицин (противотуберкулёзный препарат) специфически угнетает синтез РНК.

Противогрибковые и противовирусные средства обладают некоторым сходством механизмов действия. Производные имидазола и триазола ингибируют синтез эргостерола - главного структурного компо-

нента грибковой клеточной стенки, а полиеновые антибактериальные препараты (амфотерицин, нистатин) связываются с ним. Флуцитозин (противогрибковое ЛС) блокирует синтез грибковой ДНК. Многие противовирусные ЛС (например, ацикловир, идоксуридин, зидовудин - аналоги нуклеозидов) также угнетают синтез вирусных ДНК и

N-холинорецепторы нервно-мышечных синапсов гельминтов - молекулы-мишени таких противогельминтных ЛС, как, пирантел и левамизол. Стимуляция данных рецепторов вызывает тотальный спастический паралич.

Характер, сила и длительность действия ЛС

Длительность, силу и способ взаимодействия ЛС и молекулы-мишени характеризует фармакологический ответ (как правило, обусловлен прямым действием препарата, реже - изменением сопряжённой системы, и только в единичных случаях регистрируют рефлекторный фармакологический ответ).

Основным действием ЛС считают эффект вещества, используемый при лечении данного больного. Другие фармакологические эффекты рассматриваемого ЛС называют второстепенными (или неосновными). Функциональные нарушения, вызванные приёмом препарата, рассматривают как нежелательные реакции (см. главу 4 «Побочные эффекты лекарственных средств»). Один и тот же эффект в одном случае может быть основным, а в другом - второстепенным.

Выделяют генерализованное или локальное (местное) действия ЛС. Местные эффекты наблюдают при использовании мазей, присыпок или ЛС, принимаемых внутрь, не всасывающихся в ЖКТ, либо, наоборот, хорошо всасывающихся, но концентрирующихся в одном органе. В большинстве случаев при проникновении ЛС в биологические жидкости организма его фармакологический эффект может сформироваться в любой точке организма.

Способность многих ЛС воздействовать при монотерапии на различные уровни регуляции и процессы клеточного метаболизма одновременно в нескольких функциональных системах или органах доказывает полиморфизм их фармакологического эффекта. С другой стороны, столь большое многообразие мишеней на всех уровнях регуляции объясняет одинаковый фармакологический эффект ЛС, имеющих различную химическую структуру.

Хаотическое движение молекул позволяет ЛС оказаться вблизи оп- ределённого участка (при высоком аффинитете к рецепторам); при этом необходимого эффекта достигают даже при назначении низких концентраций ЛС. При увеличении концентрации молекул ЛС,

они вступают в реакцию с активными центрами других рецепторов (к которым у них меньший аффинитет); в результате возрастает число фармакологических эффектов, а также исчезает их селективность. Например, β 1 -адреноблокаторы в небольших дозах ингибируют только β 1 -адренорецепторы. Однако при увеличении дозы β 1 -адреноблокаторов, их селективность исчезает, при этом отмечают блокаду всех β-адренорецепторов. Подобную картину наблюдают и при назначении β-адреномиметиков. Таким образом, при увеличении дозы ЛС наряду с некоторым усилением клинического эффекта всегда регистрируют, и значительно, увеличение количества побочных эффектов.

Состояние молекулы-мишени (как в основной, так и в сопряжён- ной системе) необходимо учитывать при прогнозировании и оценке эффективности действия ЛС. Нередко преобладание побочных эффектов над основным действием обусловлено нарушением физиологического баланса вследствие характера заболевания или индивидуальных особенностей пациента.

Более того, сами ЛС могут изменять чувствительность молекул-мишеней, варьируя скорости их синтеза или деградации или индуцируя формирование различных модификаций мишеней под действием внутриклеточных факторов, - всё это приводит к изменению фармакологического ответа.

По фармакологическим эффектам ЛС можно разделить на две группы - вещества, обладающие специфическим и неспецифическим действием. К ЛС неспецифического действия относят препараты, вызывающие развитие широкого спектра фармакологических эффектов путём влияния на различные системы биологического обеспечения. В эту группу ЛС входят, в первую очередь, субстратные вещества: витаминные комплексы, глюкоза и аминокислоты, макроэлементы и микроэлементы, а также растительные адаптогены (например, женьшень и элеутерококк). В связи с отсутствием чётких границ, определяющих основной фармакологический эффект данных ЛС, их назначают большому количеству пациентов при разных заболеваниях.

Если ЛС действует (как агонист или антагонист) на рецепторный аппарат определённых систем, его влияние рассматривают как специфическое. К этой группе ЛС относят антагонисты и агонисты различных подтипов адренорецепторов, холинорецепторов и т.д. Органное расположение рецепторов не влияет на эффект, производимый препаратами специфического действия. Поэтому, несмотря на специфичность действия данных ЛС, регистрируют различные фармакологические ответы. Так, ацетилхолин вызывает сокращение гладких мышц бронхов, пищеварительного тракта, увеличивает секрецию слюнных желёз. Атропин производит противоположный эффект. Избиратель-

ность или селективность действия ЛС отмечают только при изменении активности системы только в определённой её части или в одном органе. Например, пропранолол блокирует все β-адренорецепторы симпатоадреналовой системы. Атенолол - селективный β 1 -адреноблокатор - блокирует только β 1 -адренорецепторы сердца и не влияет на β 2 -адренорецепторы бронхов (при использовании небольших доз). Сальбутамол избирательно стимулирует β 2 -адренорецепторы бронхов, оказывая незначительное действие на β 1 -адренорецепторы сердца.

Избирательность (селективность) действия ЛС - способность вещества накапливаться в ткани (зависит от физико-химических свойств ЛС) и производить требуемый эффект. Избирательность обусловлена также сродством к рассматриваемому морфологическому звену (с учё- том строения клеточной мембраны, особенностей клеточного метаболизма и т.д.). Большие дозы селективно действующих ЛС чаще всего оказывают влияние на всю систему, но вызывают фармакологический ответ, соответствующий специфическому действию ЛС.

Если основная масса рецепторов взаимодействует с ЛС, то отмечают быстрое наступление фармакологического эффекта и его большую выраженность. Процесс происходит только при высоком аффинитете ЛС (его молекула может иметь строение, сходное со структурой естественного агониста). Активность ЛС и длительность его действия в большинстве случаев пропорциональны скорости образования и диссоциации комплекса с рецептором. При повторном введении ЛС иногда регистрируют снижение эффекта (тахифилаксию), т.к. не все рецепторы освободились от предыдущей дозы препарата. Уменьшение выраженности эффекта происходит и в случае истощения рецепторов.

Реакции, регистрируемые при введении лекарственных средств

Ожидаемый фармакологический ответ.

Гиперреактивность - повышенная чувствительность организма к используемому ЛС. Например, при сенсибилизации организма пенициллинами повторное их введение может привести к возникновению реакции гиперчувствительности немедленного типа или даже к развитию анафилактического шока.

Толерантность - снижение чувствительности к применяемому ЛС. Например, при бесконтрольном и длительном приеме β 2 -адреномиметиков, толерантность к ним возрастает, а фармакологический эффект уменьшается.

Идиосинкразия - индивидуальная чрезмерная чувствительность (непереносимость) к данному препарату. Например, причиной идиосинкразии может быть генетически обусловленное отсутс-

твие ферментов, метаболизирующих данное вещество (см. главу 7 «Клиническая фармакогенетика»).

Тахифилаксия - быстро развивающаяся толерантность. К некоторым ЛС, например к нитратам (при непрерывном и длительном их применении), толерантность развивается особенно быстро; при этом препарат заменяют или увеличивают его дозу.

Оценивая время действия ЛС, необходимо выделять латентный период, максимальное действие, время удержания эффекта и время последействия.

Время латентного периода ЛС, особенно при ургентных ситуациях, определяет их выбор. Так, в одних случаях латентный период составляет секунды (сублингвальная форма нитроглицерина), в других - дни и недели (аминохинолин). Длительность латентного периода может быть обусловлена постоянным накоплением ЛС (аминохинолин) в месте его воздействия. Нередко длительность латентного периода зависит от опосредованного механизма действия (гипотензивный эффект β-адреноблокаторов).

Время удержания эффекта - объективный фактор, определяющий кратность назначения и длительность применения ЛС.

Подразделяя ЛС по фармакологическим эффектам, необходимо учитывать, что в основе одного и того же симптома лежат различные механизмы действия. Примером служит гипотензивное влияние таких ЛС, как диуретики, β-адреноблокаторы, блокаторы медленных кальциевых каналов (различные механизмы действия производят один и тот же клинический эффект). Этот факт учитывают при выборе ЛС или их комбинации при проведении индивидуальной фармакотерапии.

Существуют факторы, влияющие на скорость наступления эффекта, его силу и продолжительность при применении лекарственных веществ.

Скорость, способ введения и доза ЛС, взаимодействующего с рецептором. Например, внутривенное струйное введение 40 мг фуросемида производит более быстрый и выраженный диуретический эффект, чем 20 мг препарата, введённого внутривенно или 40 мг диуретика, принятого внутрь.

Тяжёлое течение заболевания и связанные с ним органические поражения органов и систем. Большое влияние на функциональное состояние основных систем оказывают и возрастные аспекты.

Взаимодействие используемых ЛС (см. главу 5 «Взаимодействие лекарственных средств»).

Важно знать, что применение некоторых ЛС оправдано лишь при условии первоначального патологического изменения системы или акцепторов мишени. Так, жаропонижающие ЛС (антипиретики) снижают температуру только при лихорадке.

Фармакодинамика - раздел фармакологии, занимающийся изучением фармакологических эффектов, вызываемых лекарственными веществами, а также изучением механизмов возникновения этих эффектов.

Лекарственные вещества, действуя на организм, вызывают различные изменения деятельности органов и, систем (например: усиление сокращений сердца, расширение просвета бронхов, понижение артериального давления, снижение температуры тела и т. д.).

Такие изменения в деятельности организма под влиянием лекарств обозначаются термином фармакологические эффекты. Для каждого лекарственного препарата характерны определенные эффекты, но с лечебными целями используют только некоторые, их называют основными фармакологическими эффектами, остальные, неиспользуемые, а иногда и нежелательные, называют побочными.

Механизмами действия называют способы, которыми лекарственные вещества вызывают указанные эффекты. Вопрос об изучении механизмов действия лекарственных препаратов является одним из наиболее сложных в фармакологии. Механизмы действия многих лекарственных препаратов, применяемых уже не одно столетие, изучены далеко не полностью. Примером может служить такой анальгетик, как морфин. Хотя механизмы действия многих препаратов еще окончательно не изучены, сегодня можно уже говорить о некоторых типовых механизмах действия.

По механизму действия все лекарственные вещества можно разделить на три группы:

    Лекарственные препараты, в основе действия которых лежат физические или физико-химические механизмы. Примером могут служить: различные адсорбенты, многие присыпки, некоторые мази, некоторые слабительные (вазелиновое масло).

    Лекарственные вещества, механизм действия которых обусловлен химическим взаимодействием вне клеток. Например, действие антацидов, нейтрализующих соляную кислоту желудка.

    Лекарственные препараты, первично влияющие на метаболизм клеток. Так действует большинство лекарств.

Влияние лекарств на метаболизм клеток осуществляется, главным образом, за счет их взаимодействия с рецепторами. Под рецептором, в широком смысле слова, подразумевают ту структуру клетки, с которой взаимодействует препарат и тем самым меняет ее функцию.

Знание механизмов действия лекарственных препаратов очень важно и для правильного их применения и для предупреждения их нежелательных эффектов. Это приводит к тому, что фармакологи много внимания уделяют изучению механизмов действия не только новых, но и уже давно известных лекарственных препаратов.

9.1. Основные мишени действия лекарственных веществ.

Для более точного представления о механизме действия и фармакодинамике лекарственных веществ очень важное значение имеет учет специфичности, чувствительности, нейрогуморальной регуляции, рецепторов, синапсов, биологических мембран, называемых мишенями действия лекарственных веществ.

Чувствительность в широком понятии - способность животного организма реагировать на разные эндогенные и экзогенные раздражители. Во врачебной практике чаще всего о чувствительности говорят в более узком смысле, а именно как о способности анализаторов реагировать на раздражитель. Это свойство присуще всем живым организмам, но оно усложняется и совершенствуется как в филогенезе, так и в онтогенезе.

Анализаторами, по предложению И. П. Павлова, называют сложные анатомо-физиологические системы, обеспечивающие восприятие и анализ всех раздражителей, действующих на животных.

Принято учитывать чувствительность абсолютную, или минимальный порог раздражения (способность реагировать на минимальную величину раздражителя), и дифференциальную (способность реагировать на изменения интенсивности раздражения).

Различают также чувствительность протопатическую и эпикрическую. Протопатическая чувствительность есть примитивный вид чувствительности, воспринимающий только сильные механические и термические раздражения. В отличие от этого чувствительность эпикрическая более тонкая и дифференцированная.

У животных бывают очень различные нарушения чувствительности, а чаще всего:

1) гиперестезия (повышение разных видов чувствительности с понижением порога соответствующей чувствительности);

2) гиперпатия (повышенная чувствительность - болевая, температурная, тактильная) с изменением качества ощущения, с нарушением локализации и дифференциации его;

3) полиэстезия - когда одиночные раздражения воспринимаются как множественные;

4) аллоэстезия - раздражения ощущаются в другом месте;

5) аллохейрия - раздражение ощущается в симметричном участке другой стороны. Иногда извращается ощущение раздражения, например, болезненное ощущение холода или тепла.

Чувствительность сильно изменяется при разных изменениях в организме и в первую очередь при изменении состояния центральной нервной системы и симпатической иннервации. Ее можно существенно изменить фармакологическими веществами - повысить или ослабить, можно восстановить нарушенное состояние их, можно и профилактировать нарушения.

Постоянство состава внутренней среды организма и функции физиологических систем регулируются и координируются нервной системой и биологически активными веществами, содержащимися в крови, лимфе и тканевой жидкости; обычно это называется нейрогуморальной регуляцией, а активные вещества нервными и гуморальными интеграторами. В нейрогуморальной регуляции участвуют очень различные специфические и неспецифические продукты обмена веществ, в том числе медиаторы, нейрогормоны, гистамин, простагландины, олигопептиды и др.

Биологически активные вещества с током крови разносятся и вступают во взаимодействие только с соответствующими рецепторами (адрено-, холино-, серотонин-, гистамин- и др.) реактивных структур в тех или иных клетках и часто называемых «клетками-мишенями», а так как клетки разных органов имеют сходное строение, то можно говорить о действии биологически активных веществ на «орган-мишень».

Влияние биологически активных веществ обычно осуществляется через разные промежуточные соединения вторичных передатчиков, из которых очень важную роль играют аденозин-3-5-монофосфат (3-5-цАМФ - универсальный передатчик действия катехоламинов) и циклический гуанидин-З-5-монофосфат (цГМФ - посредник действия ацетилхолина, инсулина, а также многих других трофотропных веществ).

Участие вторичных передатчиков в проявлении эффекта довольно сложное, происходящее через ряд этапов. Прежде всего, они образуются и в обычных условиях жизни клетки, а под влиянием фармакологических агентов активизируются или подавляются. Необходимые условия для этого чаще всего касаются изменения тканевого обмена и активизации некоторых ферментов (аденилатциклады, фосфодиэтилэстеразы и др.). Образовавшееся биологически активное вещество передает соответствующую информацию в центральную нервную систему, т. е. в определенных условиях выполняет функцию звена рефлекторной дуги (рис. 2). Это вызывает ответную реакцию наиболее чувствительных отделов ЦНС, в результате чего изменяется поток нервных импульсов, передаваемых в рабочие органы.

Рефлекторная дуга (в ранее принятом понятии) усложняется включением гуморальных связей и поэтому представляется состоящей из звеньев, имеющих высокую специфическую чувствительность к различным фармакологическим веществам. Значение нейрогуморальных рефлекторных дуг усиливается наличием в центральной нервной системе специальных медиаторных нейронных систем (норадреналиновые, дофаминовые, серотониновые, ацетилхолиновые, гистаминовые и др.). Благодаря этим системам ЦНС не только осуществляет рефлекторную связь, но и продуцирует высокоактивные химико-фармакологические вещества типа медиаторов (пептиды, катехоламиды, ацетилхолин, серотонин, гамма-аминомасляная кислота и др.), регулирующие деятельность и мозга и всех физиологических систем. В фармакологии нейрогуморальной регуляции больше внимания теперь уделяется контролю за чувствительностью регулирования синаптической передачи, состоянием рецепторов и активностью медиаторов.

Медиаторы (нейротрансмиттеры, синаптические передатчики) - химические передатчики нервного импульса на клетки физиологических систем или на другие нервные клетки. Место передачи получило название синапсов, а химические структуры, с которыми взаимодействует медиатор, реактивными (холинергические, адренергические). Значительная часть медиаторов является биогенными аминами (декарбоксилированные производные ароматических аминокислот). Из катехоламиновых производных хорошо изучен дофамин, известный медиатор интернейронов синаптических ганглиев.

Дофаминергические нейроны имеются в лимбической системе среднего мозга, а также в гипоталамической области и в сетчатке. Норадреналин вырабатывается в мозговом веществе надпочечников, в скоплениях вненадпочечниковой хромафинной ткани, в головном мозге и в постганглионарных окончаниях симпатических нервов. Он является медиатором симпатических нейронов.

Серотонин (производное индола) - медиатор нервных сплетений кишечника; он активно влияет на дыхание и кровообращение, положительно ино- и хронотропно на сердце, возбуждает гладкие мышцы.

Ацетилхолин - уксуснокислый эфир холина - медиатор постганглионарных окончаний холинергических нервов и очень широкого влияния.

Некоторые медиаторы являются аминокислотами: глицин, глутаминовая, гамма-аминомасляная, аспарагиновая и др.

Образование медиаторов является обязательной частью нормального хода обмена веществ в пресинаптической зоне. Например, а-тирозин под влиянием фермента тирозин-3-гидроксилазы преобразуется в L-дофа, а она под воздействием дофа-декарбоксилазы переходит в дофамин. Под воздействием дофамин-гидроксилазы дофамин превращается в норадреналин, а он под воздействием фенилэтаноламин-N-метилтрансферазы - в адреналин.

Рецепторы - специфические концевые образования чувствительных нервов, воспринимающие раздражения и трансформирующие энергию внешнего раздражения в процесс нервного возбуждения. Они информируют головной мозг животного о состоянии и изменениях внутренней и внешней среды.

Рецепторы, обеспечивающие основное действие лекарств, называют специфическими.

Сродство вещества к рецептору, приводящее к образованию с ним комплекса, обозначается термином аффинитет. Способность вещества при взаимодействии с рецептором вызывать тот или иной эффект, называется внутренней активностью вещества.

Лекарства, вызывающие при взаимодействии с рецептором биологический эффект, называют агонистами. Возможно связывание двух различных агонистов с разными участками макромолекулы рецептора. Это явление носит название аллостерического взаимодействия. В этом случае одно вещество может повышать или снижать аффинитет другого. Например, сибазон аллостерически повышает аффинитет ГАМК к соответствующим рецепторам.

Вещества, не вызывающие эффекта при взаимодействии с рецепторами, но уменьшающие или устраняющие эффекты агонистов, носят название антагонистов.

Кроме специфических рецепторов существуют еще неспецифические, с ними могут связываться многие лекарственные вещества, не вызывая при этом никаких эффектов. Примером могут служить рецепторы белков плазмы крови.

Фармакологические рецепторы, включенные в мембраны клеток, называют мембранными рецепторами, а рецепторы, находящиеся в цитоплазме, называют цитоплазматическими.

Клеточные рецепторы воспринимают всю информацию из окружающей среды и одновременно являются тригерными (пусковыми) механизмами, запускающими деятельность клетки.

К воспринимающим приборам относятся рецепторы всех органов чувств (осязание, обоняние, вкус, слух, зрение) и специальные рецепторные образования в органах и тканях.

Характерным для любых рецепторов является восприятие только определенных видов (и даже в очень незначительной силе) раздражения. Разнообразие раздражителей рецепторов привело к сложности строения и большой дифференциации этих биологических структур, к образованию множества типов сенсорных органов.

Различают рецепторы - воспринимающие раздражения из внешней среды (экстерорецепторы), из внутренних органов (интерорецепторы), а также из скелетных мышц и сухожилий (проприорецепторы).

В зависимости от особенностей раздражителя различают механорецепторы, хеморецепторы, терморецепторы, а также рецепторы, воспринимающие боль, свет, звук, вкус, запах и др.

Высокая чувствительность анализаторов, как полагают, обеспечивается наличием в рецепторах специальных сенсибилизаторов или структур, обеспечивающих трансформацию энергии раздражения в возбудительный процесс.

Реакция анализаторов на лекарственное вещество тем значительнее, чем выше концентрация его и чем больше площадь контакта с тканями. Изменение возбудителей рецептора и порог его неодинаковы при воспалении, а также при разном состоянии центральной нервной системы и адренергической иннервации.

При воздействии на экстерорецепторы фармакологическими веществами чаще всего изменяют чувствительность (болевую, тактильную и температурную). При воздействии на интерорецепторы вызывают изменение состояния их во внутренних органах, сосудах и др. (горечи, сладкие, ароматические, местноанестезирующие, слизистые, вяжущие, слабительные вещества и др.).

Для действия на проводящие пути практически применяют местноанестезирующие вещества. На принципе раздражения рецепторов афферентных нервов основано слабительное влияние гипертонических растворов солей, действие горьких и сладких веществ, эмодина и хризофановой кислоты. Для действия на центры, воспринимающие импульсы от рецептора, используются в зависимости от потребности все вещества, влияющие на центральную нервную систему.

К наиболее изученным холинорецепторам относят прежде всего М-холинорецепторы. Установлено, что в них есть три центра, реагирующие с функциональными группами ацетилхолина:

    1 - анионный центр (реагирует с катионным центром медиатора),

    2 - центр кислородный (реагирует с эфирным кислородом медиатора)

    3 - центр карбонильно-кислородный (реагирует е карбонильным кислородом ацетилхолина или с соответствующими ему активными группами (рис. 3).

Все эти три центра находятся в рецепторе в очень точном взаиморасположении и только в этих условиях они воспринимают ацетилхолин. Структура рецепторов очень различна.

Большой научный и практический интерес представляет открытие рецепторов мозга. Примером этого могут быть новые данные об опиатных рецепторах. Известно, что антагонистом опиатов является налоксон. Эксперименты с этим препаратом показали, что в гомогенате мозга крыс опиаты тормозят способность налоксона активно связываться с тканями мозга. Было высказано предположение, что опиаты и налоксон связываются с одними и теми же рецепторами. Основанием для этого было также то, что связывание налоксона разными опиатами коррелировано с их анальгезируюшей активностью. Последующие эксперименты в разных направлениях подтвердили наличие опиатных рецепторов в тканях мозга. Наибольшее количество их обнаружено в лимбической системе - в стриатуме, гипоталамусе, миндалинах и очень мало в мозжечке и спинном мозге.

Рис. 2. Схематическое изображение медиаторных путей в головном мозге:

НА - норадреналиновые пути;

ДА-дофаминовые пути (левая половина рисунка);

С - серотониновые пути (правая половина рисунка);

1 - лимбический отдел переднего мозга;

2 - неостриатум;

3 - новая кора;

4 - палеостриатум;

5 - зрительный бугор;

6 - гипоталамус;

7 - средний мозг;

8 - варолиев мост;

9 - продолговатый мозг;

10 - спинной мозг.

Доказано, что опиатоподобное вещество мозга состоит из двух пентапептидов, названных энкефалинами. Один (мет-ЭНК) - Н-тирозин-глицин-глицин-фенил-аланин-метидин-ОН, второй (лей-ЭНК) - Н-тирозин-глицин-глицин-фенил-аланин-лейцин-ОН. Природные и синтетические энкефалины по анальгезирующему эффекту, по механизму действия и по отношению к налоксону имеют много сходного с опиатами, а по химическому составу - с некоторыми пептидами мозга, в частности у них такая же последовательность аминокислот (61- 65), как и в гормоне гипофиза бета-липотропине.

Современное изучение бета-липотропина и разных частей его молекулы показало, что опиатоподобной активностью обладает ряд полипептидов, выделенных из задней доли гипофиза и гипоталамуса. Этим пептидам дано название эндорфины (эндогенные морфины). Более того, установлено, что некоторые эндорфины активнее энкефалинов.

Изучение биологической роли энкефалинов и эндорфинов привело к предположению, что их влияние проявляется не только в регулировании процессов боли и обезболивания, но и эмоциональных процессов. Установлено, что эндорфины, помимо анальгетического влияния, оказывают выраженное седативное и каталептическое действие подобно нейролептикам.

Синапсы - специализированные нервные образования, где происходит контакт между возбудимыми клетками (рис. 4). Они необходимы для осуществления функции передачи и преобразования сигналов. Иными словами, они обеспечивают проявление активности нервной системы и интегративную деятельность мозга.

Рис. 3. Схема строения М- и Н-холинорецепторов и взаимодействие с ними ацетилхолина

А - М-холинорецептор;

I

II - центр реакции холинорецептора с эфирным кислородом АХ;

III - центр реакции холинорецептора с карбонильным кислородом АХ;

IV- центр реакции холинорецептора с гидроксилом кислотной части холинолитика.

Заштрихованные участки- места связи (по типу связи Ван-дер-Ваальса) холинорецептора с М-холинолитиками;

Б - Н-холинорецептор;

I - анионный центр, взаимодействующий с положительно заряженным атомом азота («катионная головка») АХ;

II - центр с частично отрицательным зарядом, реагирующий с эфирным кислородом АХ;

III - дополнительный анионный центр.

Заштрихованные участки - места связи (по типу связи Ван-дер-Ваальса) холинорецептора с Н-холиноблокаторами;

штриховыми линиями обозначены места связи центров холинорецептора с активными группами АХ.

Передача в синапсах осуществляется при посредстве медиаторов. Медиаторы не только осуществляют передачу импульса на рецепторы постсинаптических мембран, но и изменяют проницаемость мембран для ионов, вызывают генерацию местного нерегенеративного потенциала. Граница соприкосновения осуществляется через две мембраны - пресинаптическую и постсинаптическую, а пространство между ними принято называть синаптической щелью.

Пресинаптическая мембрана является завершающейся частью поверхностной мембраны оксонального окончания; она имеет сложную проницаемость (некоторые даже считают, что у нее есть отверстия для выделяемого медиатора). Постсинаптическая мембрана не имеет отверстий, но она избирательно проницаема для медиатора с пресинаптической мембраны.

Синапсы пресинаптических окончаний имеют синаптические пузырьки, наполненные медиатором высокой концентрации. Эти медиаторы под влиянием нервного импульса выходят из пузырьков в местах перерыва мембраны, проникают в синаптическую щель и контактируют с постсинаптической мембраной. Фармакологическое воздействие на синапсы очень простое - ускорить или замедлить введение в действие как возбуждения, так и угнетения заключается в том, что нервный импульс, проходящий в пресинаптическое окончание, вызывает деполяризацию пресинаптической мембраны, изменяет ряд свойств ее, в том числе увеличивает проницаемость ионов кальция.

Ионы кальция в пресинаптической мембране ускоряют освобождение медиатора из пузырьков. Медиатор легко диффундирует, проходит через синаптическую щель и реагирует с рецепторами постсинаптической мембраны; этот процесс ярко выражен, так как в это же время происходит генерация потенциала постсинаптического и увеличение проницаемости синаптических мембран для одного или нескольких ионов. При возбуждении синапсов увеличивается натриевая проводимость (а часто, одновременно с ней, и калиевая) (рис. 5).

Этот процесс сопровождается деполяризацией и возбуждением мембраны постсинаптической клетки. Под влиянием медиаторов тормозящих увеличиваются проницаемость постсинаптических мембран для ионов хлора и явления гиперполяризации. В ряде случаев медиатор, кроме указанных процессов, влияет на метаболизмы постсинаптического нейрона и тогда фармакологический эффект усложняется.

Рис. 4. Схема нервно-мышечного синапса и фазы передачи возбуждения в нем

А - состояние покоя;

Б - состояние возбуждения;

В - восстановление исходного состояния

1 - окончание нервного волокна;

2 - ацетилхолин;

3 - пресинаптическая мембрана;

4 - постсинаптическая мембрана;

5 - холинорецептор;

6 - мышечное волокно.

Очень важная часть синапсов - своеобразные везикулы, расположенные в основной массе в аксональных окончаниях в непосредственной близости от синаптической мембраны. Везикулы проходят в синаптическую щель и контактируют с постсинаптической мембраной.

Рис. 5.

А. Мембранный потенциал покоя основан на движении наружу некоторого количества ионов калия; меньшее количество ионов натрия проникает в клетку, но концентрации обоих ионов внутри поддерживаются натриевым насосом.

Б. Нервный импульс характеризуется направленным внутрь движением большого количества ионов натрия.

В. Во время наступающего вслед за этим рефрактерного периода проницаемость для ионов натрия снова уменьшается, а затем заметное движение ионов калия наружу восстанавливает состояние покоя.

Освобождающийся медиатор вступает в соединение с хеморецептивным веществом, обусловливая деполяризацию мембраны и сильно повышая проницаемость ее для ионов. Одновременно с этим возникает постсинаптический потенциал, в постсинаптической мембране появляется ток действия мышечного волокна, ток проходит по волокну, и оно сокращается.

Основной функцией синапсов является передача возбуждения, но в них происходит также перестройка и трансформация проходящих импульсов. И этот процесс регулируется центральной нервной системой, превращением премедиаторов и др.

Биологические мембраны - гибкие, лабильные, постоянно обновляющиеся образования, часто называемые мембраной плазмолитической или цитоплазматической. Нужно иметь в виду, что они функционально очень активные поверхностные структуры клеток. Внутри клетки имеются мембраны для всех ее структур - митохондриальные, лизосомальные, ядерные и др.

Мембраны обеспечивают ограничение цитоплазмы и внутриклеточных структур, образуют единую систему канальцев, складов и замкнутых положений в клетке. Они выполняют разные сложные функции жизнедеятельности: формирование клеточных структур, содержание внутриклеточного гомеостаза, участие в процессах возбуждения и проведения нервного импульса, фото-, механо- и хеморецепцию, всасывание, секрецию и газообмен, тканевое дыхание, запасание и трансформацию энергии и т. п.

Совершенно ясно, что все эти функции нарушаются при разных патологических состояниях. Они существенно изменяются под воздействием лекарственных веществ. Роль мембран в механизме действия лекарственных вешеств раскрывается все больше и больше, и для уяснения этого необходимо полнее представлять основы их строения и влияния на физиологические процессы.

Биологические мембраны имеют сложное строение. Содержание липидов в них составляет 25-70%.

Липидный состав очень богатый и легко изменяется; общим является наличие липидов, проявляющих одновременно гидрофильные и гидрофобные свойства.

Разнообразны по составу и белки. Все они частично или полностью пронизывают липидный слой; из белков особое функциональное значение имеют ферменты и белки транспортных систем.

Очень важной является транспортная функция мембраны, обеспечивающая поддержание внутриклеточного гомеостаза, возбуждение и проведение нервного импульса, трансформацию энергии, процессы метаболизма и др.

Транспорт происходит очень быстро, движение ионов происходит как активно, так и пассивно. Функцию активной резорбции осуществляют специфические липопротеиновые структуры, пронизывающие мембрану. Эти структуры выполняют роль ионных каналов, и селективную активность их обусловливают конфигурация протоков, электрический заряд структур. Важной особенностью для пассивного продвижения ионов натрия и калия является зависимость от количества кальция в клетке (чем она больше, тем легче продвигаются и натрий, и калий).

Активный транспорт хорошо изучен в отношении ионов натрия, калия, кальция и водорода. Для примера можно привести натриево-калиевый насос, функционирующий за счет энергии АТФ.

Предполагают, что натриево-калиевый насос обусловлен липопротеиновой глобулой с двумя белковыми субъединицами, у которой на внутренней стороне мембраны имеются центры связывания АТФ, фосфата и натрия, а на наружной - центры связывания калия.

В результате конформационных перестроек ионосодержащего фосфорилированного фермента ионы натрия и калия освобождаются и транспортируются.

Структура глобулы кальциевого насоса, находящаяся в мембранах саркоплазматического ретикулума, функционирует сходно с натриевым. Основным компонентом насоса является кальцийзависимая АТФ-аза; механизм переноса иона кальция и АТФ-азной реакции включает образование фосфорилированного промежуточного продукта и последующий гидролиз его.

Активный транспорт ионов водорода происходит в сопрягающихся мембранах, где он обеспечивается энергией АТФ-аз.

Перенос неэлектролитов (органических веществ) осуществляется разными механизмами. Он часто совпадает со свободной диффузией, но происходит в 30-50 раз быстрее и поэтому обозначается как облегченная диффузия. В принципе этот транспорт должен выравнивать трансмембранные коэффициенты. И он очень часто изменяется, в связи с тем, что разные неэлектролиты активно включаются в обменные процессы, а от этого количество их быстро меняется.

Полагают, что облегченная диффузия обусловлена прежде всего специфическим узнаванием транспортируемого вещества, связыванием его переносчиком (транспортным белком), затем перенос через мембрану.

В заключение происходит диссоциация транспортированного комплекса. Очень часто процесс облегченной диффузии используется для повышения концентрации транспортируемого вещества. В этих случаях мобилизуется энергия не за счет АТФ, а в виде электрохимического градиента ионов, создаваемого ионными насосами.

Так же сложно, как транспортирование, осуществляется генерация биоэлектрических потенциалов, проведение возбуждения по нервным и мышечным клеткам, а также в местах синаптических окончаний.

Любое лекарственное вещество вызывает несколько изменений функции разных физиологических систем и хода биохимических процессов. И каждое из изменений имеет свои предпосылки или причины, называемые в фармакологии механизмом действия.

Механизмы действия это по существу теории действия, подкрепленные экспериментом.

Любое действие лекарственного вещества начинается с взаимодействия его с определенными структурами клеток или физиологических систем организма. В итоге этого изменяются взаимоотношения, состав или свойства вступившей в реакцию с лекарственным веществом структуры клетки, а как следствие, изменяются взаимоотношения этой структуры с разными органами и системами.

Четкое понимание механизмов действия лекарственных веществ в тех или иных направлениях имеет большое значение для определения наиболее ценного препарата.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама